Verification-Preserving Inlining in Automatic Separation
Logic Verifiers

THIBAULT DARDINIER, ETH Zurich, Switzerland
GAURAV PARTHASARATHY, ETH Zurich, Switzerland
PETER MULLER, ETH Zurich, Switzerland

Bounded verification has proved useful to detect bugs and to increase confidence in the correctness of a
program. In contrast to unbounded verification, reasoning about calls via (bounded) inlining and about loops
via (bounded) unrolling does not require method specifications and loop invariants and, therefore, reduces the
annotation overhead to the bare minimum, namely specifications of the properties to be verified. For verifiers
based on traditional program logics, verification is preserved by inlining (and unrolling): successful unbounded
verification of a program w.r.t. some annotation implies successful verification of the inlined program. That is,
any error detected in the inlined program reveals a true error in the original program. However, this essential
property might not hold for automatic separation logic verifiers such as CAPER, GRASSHOPPER, REFINEDC,
STEEL, VERIFAST, and verifiers based on VIPER. In this setting, inlining generally changes the resources owned
by method executions, which may affect automatic proof search algorithms and introduce spurious errors.

In this paper, we present the first technique for verification-preserving inlining in automatic separation
logic verifiers. We identify a semantic condition on programs and prove in IsABELLE/HOL that it ensures
verification-preserving inlining for state-of-the-art automatic separation logic verifiers. We also prove a dual
result: successful verification of the inlined program ensures that there are method and loop annotations
that enable the verification of the original program for bounded executions. To check our semantic condition
automatically, we present two approximations that can be checked syntactically and with a program verifier,
respectively. We implement these checks in VIPER and demonstrate that they are effective for non-trivial
examples from different verifiers.

CCS Concepts: « Theory of computation — Separation logic; Program verification; Automated rea-
soning.

Additional Key Words and Phrases: Modular Verification, Bounded Verification, Inlining, Loop Unrolling

ACM Reference Format:

Thibault Dardinier, Gaurav Parthasarathy, and Peter Miiller. 2023. Verification-Preserving Inlining in Automatic
Separation Logic Verifiers. Proc. ACM Program. Lang. 7, OOPSLA1, Article 102 (April 2023), 30 pages. https:
//doi.org/10.1145/3586054

1 INTRODUCTION

Modular deductive program verification can reason about complex programs and properties, but is
expensive. Even automatic modular verifiers require a substantial annotation overhead, including
method pre- and postconditions, loop invariants, and often ghost code. Bounded verification is a
powerful alternative that reduces this overhead significantly. By inlining method calls (i.e., replacing
a call by the callee’s body up to a finite call depth), bounded verification does not require method

Authors’ addresses: Thibault Dardinier, thibault.dardinier@inf.ethz.ch, Department of Computer Science, ETH Zurich,
Switzerland; Gaurav Parthasarathy, gaurav.parthasarathy @inf.ethz.ch, Department of Computer Science, ETH Zurich,
Switzerland; Peter Miiller, peter.mueller@inf.ethz.ch, Department of Computer Science, ETH Zurich, Switzerland.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2023 Copyright held by the owner/author(s).

2475-1421/2023/4-ART102
https://doi.org/10.1145/3586054

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAL, Article 102. Publication date: April 2023.

HTTPS://ORCID.ORG/0000-0003-2719-4856
HTTPS://ORCID.ORG/0000-0002-1816-9256
HTTPS://ORCID.ORG/0000-0001-7001-2566
https://doi.org/10.1145/3586054
https://doi.org/10.1145/3586054
https://orcid.org/0000-0003-2719-4856
https://orcid.org/0000-0002-1816-9256
https://orcid.org/0000-0001-7001-2566
https://doi.org/10.1145/3586054
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://creativecommons.org/licenses/by/4.0/

102:2 Thibault Dardinier, Gaurav Parthasarathy, and Peter Miiller

specifications. Similarly, it avoids the need for loop invariants by unrolling loops (i.e., replacing a
loop by finitely many copies of its body).

While bounded verification generally does not prove correctness for all executions of a program,
it effectively finds errors and increases the confidence that a program is correct. Consequently,
bounded verification is commonly applied by model checkers [Clarke et al. 2004] and also used by
deductive verifiers. For example, the CorrAL verifier [Lal et al. 2012], which powers Microsoft’s
Static Driver Verifier [Lal and Qadeer 2014], inlines method calls and unrolls loop iterations in a
BooGIE program [Leino 2008], before calling the deductive BoogIE verifier. In the following, we
subsume both method inlining and loop unrolling under the term inlining.

Inlining is also a useful stepping stone toward modular verification, where we use “modular
verification” to refer to unbounded verification that verifies method calls (resp. loops) w.r.t. their
annotated contracts (resp. annotated loop invariants). Detecting errors using inlining before adding
method specifications and loop invariants can prevent developers from wasting time attempting
to annotate and verify an incorrect program. Inlining is also useful during the process of adding
annotations to validate partial annotations before the program contains sufficient annotations to
enable modular verification. For instance, inlining lets developers validate method specifications
before providing loop invariants or validate partial loop invariants.

To avoid unnecessary manual labor, it is crucial that inlining itself does not introduce false
positives (spurious errors): a verification error in the inlined program should occur only if the error
occurs also during the verification of the original program for all method specifications and loop
invariants. Equivalently, if there exist annotations (possibly extending existing partial annotations)
s.t. the original program verifies then the inlined program must also verify. If this holds, we say that
inlining is verification-preserving. Note that even with verification-preserving inlining, bounded or
modular verification may report false positives if the program logic on which the verifier is based
is incomplete or if valid proof obligations generated by the verifier cannot be discharged (e.g., due
to limitations of SMT solvers); however, those false positives are not caused by inlining and, thus,
irrelevant here. Verification-preserving inlining ensures that errors detected by a verifier in the
inlined program will cause the verifier to also reject the original program. This property increases
the confidence that the original program is actually incorrect and spares developers the effort of
trying to find (non-existing) annotations that make modular verification succeed.

In verifiers based on traditional program logics (like COrRRAL), inlining is trivially verification-
preserving. However, many automatic verifiers based on separation logic rely on proof search
algorithms that may render inlining non-preserving. Separation logic [Reynolds 2002] (SL thereafter)
uses resources, such as permissions to access heap locations. These resources are owned by method
executions and transferred between executions upon call and return. As a result, inlining a method
call potentially changes the resources available during the verification of the callee’s method
body, which may affect proof search algorithms that depend on the resources owned by a method
execution, in particular, (1) the automatic instantiation and (2) the automatic selection of proof
rules. Both automation techniques may cause inlining to be non-preserving, as we show in Sect. 2.

The usefulness of automatic SL verifiers (often based on SMT solvers) relies heavily on these
automation techniques. Thus, these techniques, which may cause inlining to be non-preserving,
are frequently used (in different forms) in diverse and independently-developed verifiers such as
CapeRr [Dinsdale-Young et al. 2017] (a verifier for fine-grained concurrency), GRASSHOPPER [Piskac
et al. 2014] (a verifier for a decidable separation logic fragment), STEEL [Fromherz et al. 2021] (a
verifier based on F* [Swamy et al. 2016]), REFINEDC [Sammler et al. 2021] (a verifier for C programs
based on Iris [Jung et al. 2018]), VERIFAST [Jacobs et al. 2011] (a verifier for C and Java programs),
and verifiers built on top of the VIPER infrastructure [Miiller et al. 2016] such as NacInt [Eilers and

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAL1, Article 102. Publication date: April 2023.

Verification-Preserving Inlining in Automatic Separation Logic Verifiers 102:3

Miiller 2018] (a verifier for Python programs), RSL-VIPER [Summers and Miiller 2018] (a verifier for
C++ weak-memory programs), and VERCoORs [Blom et al. 2017] (a verifier for Java).

Our evaluation, performed on the test suites of GRASSHOPPER, NAGINT, RSL-VIPER, and VERIFAST,
shows that, while most method calls (and loops) can be inlined in a verification-preserving manner,
non-preserving inlining occurs in practice in all four verifiers. More precisely, a syntactic analysis
of all files from their test suites shows that 1053 files (out of 1562, 67%) contain features that may
result in non-preserving inlining. Further manual analysis of a sample of 72 files suggests that, for
each verifier, between 10% and 67% of the sampled files contain methods (or loops) that actually
result in non-preserving inlining for some caller context.

Approach. This paper presents the theoretical foundations for verification-preserving inlining
in automatic separation logic verifiers. The core contribution is a novel semantic condition for
programs that ensures that inlining is verification-preserving, even in the presence of the automation
techniques mentioned above and described in more detail in the next section. A key virtue of this
semantic condition is that it is compositional, whereas the definition of the verification-preserving
property itself is not. Our semantic condition is inspired by the safety monotonicity and framing
properties [Yang and O’Hearn 2002] of separation logics, but goes beyond those in three major
ways: (1) We show that only a subset of statements must satisfy these properties for inlining to be
verification-preserving. (2) Our semantic condition includes a novel monotonicity property on the
final state of a statement execution. (3) Our semantic condition uses bounded relaxations of the
properties that are weaker, but still sufficient to ensure verification-preserving inlining. All three
improvements are crucial to support common use cases.

We have proved in IsABELLE/HOL that our semantic condition is sufficient. Since it is difficult to
check directly using automatic verifiers, we develop a structural condition that approximates the
semantic condition and can be checked using SMT-based verification tools. We show its practicality
by automating it in a tool that performs bounded verification of VIPER programs via verification-
preserving inlining. Errors reported by the resulting inlining feature are true errors. Our approach
does not require pre- and postconditions and loop invariants, but checks partial annotations
if present, which enables the use of inlining during the process of annotating a program. Our
experiments show that the structural condition is sufficiently precise for most common use cases.

Contributions and outline. To the best of our knowledge, we present the first theoretical founda-
tions of inlining in automatic SL verifiers. Our technical contributions are:

e We show why crucial automation techniques such as the automatic instantiation and the

automatic selection of proof rules may cause inlining to be non-preserving (Sect. 2).

e We present a novel semantic condition for inlining in automatic SL verifiers. Programs
that satisfy this condition are guaranteed to be inlined in a verification-preserving manner,
without producing false positives. Our semantic condition takes partial annotations into
account (Sect. 3).

We formalize the semantic condition for a verification language that is parametrized by a

separation algebra, to capture different state models and different flavors of SL, and prove that

inlining is verification-preserving under our semantic condition in IsaABELLE/HOL (Sect. 4).

e We prove a dual result: inlining does not lead to false negatives other than errors that occur
beyond the inlining bound [Dardinier et al. 2022b].

e We define a structural condition that approximates the semantic condition, but can be checked
in SMT-based program verifiers (Sect. 5).

e We implement an inlining tool for VIpER, which checks the structural condition and the
correctness of the inlined program (Sect. 6).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAL, Article 102. Publication date: April 2023.

102:4 Thibault Dardinier, Gaurav Parthasarathy, and Peter Miiller

e Our evaluation shows that (1) non-preserving inlining occurs in practice, (2) for many non-
trivial examples, inlining is verification-preserving and our structural condition captures this,

and (3) verification-preserving inlining is effective in practice (Sect. 6).
Our publicly-available artifact [Dardinier et al. 2023] contains IsABELLE/HOL proofs of the technical
results from Sect. 4, the tool that we implemented, and the examples used in the evaluation. Further
details are available in our accompanying technical report (TR hereafter) [Dardinier et al. 2022b].

2 THE PROBLEM

In separation logic, resources (such as a permission to access a heap location) are owned by method
executions, and transferred between executions upon call and return. Thus, inlining a method call
potentially changes the resources that the callee owns, which may affect proof search algorithms
that depend on the resources owned by the method execution. In this section, we show that this
is the case for crucial automation techniques such as the automatic instantiation (Sect. 2.1) and
the automatic selection (Sect. 2.2) of proof rules, by showing that both may cause inlining to be
non-preserving in several automatic SL verifiers.

2.1 Automatic Instantiation of Proof Rules

Applying proof rules, for instance, instantiating quantifiers, often requires choosing a resource that
is currently owned by the method. To handle a large, possibly unbounded search space, automatic
SL verifiers employ heuristics for this purpose. These heuristics may behave differently when more
resources are available and, thus, may make inlining non-preserving.

Such heuristics are often necessary when automatic SL verifiers support imprecise assertions.
Imprecise assertions do not describe the extent of the heap precisely (e.g., because multiple disjoint
heap fragments satisfy the same assertion): CAPER, GRASSHOPPER, REFINEDC, STEEL, and VERIFAST
support restricted forms of existentially-quantified assertions, VERIFAST and VIPER support frac-
tional ownership of resources [Boyland 2003; Dardinier et al. 2022a] with existentially-quantified
fractions, and REFINEDC, STEEL, and VIPER [Dardinier et al. 2022c; Schwerhoff and Summers 2015]
support magic wands. To prove the validity of such assertions, the majority of these verifiers use
proof search algorithms (e.g., to choose a satisfying heap fragment among several suitable ones).

The effect of imprecise assertions on proof heuristics is relevant for inlining even though
assertions are mainly needed for modular verification: First, as explained in Sect. 1, inlining is
useful during the process of adding annotations to a program and, thus, must handle programs with
partial annotations. Second, even bounded verification relies on method specifications for certain
calls (e.g., to library methods and foreign functions). Both cases may involve imprecise assertions.

Fig. 1 illustrates the problem on an example inspired by VERIFAST. It uses library methods alloc
to create a data structure, and crLock and acquire to create and acquire a lock. The predicate P
indicates that the lock is initialized; Q is the lock invariant (a real lock library would quantify over
the lock invariant Q, but this aspect is irrelevant here). Inlining transforms method m into method
m_inl, in which the call to n has been replaced by its body and where we assume that the user
has not given any (partial) annotation to n (yet). Note that the calls to the library methods are not
inlined because those methods are annotated and may be implemented natively.

crLock’s precondition contains an existentially-quantified predicate instance Q(?x) and is, thus,
imprecise. Therefore, a proof search algorithm needs to decide how to instantiate the bound variable
x. During modular verification, this choice is determined by n’s precondition. For instance, the
precondition Q(a) will cause the proof search to instantiate x with a since Q(a) is the only matching
resource held by n. With this precondition (and a trivial postcondition), the modular proof succeeds.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAL1, Article 102. Publication date: April 2023.

Verification-Preserving Inlining in Automatic Separation Logic Verifiers 102:5

method alloc():(1:Ref) method crLock(): (1:Ref) method acquire(l, a:Ref)
requires true requires Q(?7x) requires P(1,a)
ensures Q(1) ensures P(1,x) ensures ...
method m(r:Ref) method n(a:Ref) method m_inl() {
{ // requires Q(a) { true }
{ true } // ensures ... a := alloc()
a := alloc() { { Q) }
{ Qa) } { QCa) } b := alloc()
b := alloc() 1 := crLock() { QCa) = Q(b) }
{ Q@ Q) } { P(1,a) } 1 := crLock()
n(a) acquire(l, a) { QCa) = P(1,b) }
{ ... =Q() } { ...} acquire(l, a) // fails
} } }

Fig. 1. Example inspired by VERIFAST showing that inlining in automatic SL verifiers is potentially non-
preserving in the presence of imprecise assertions. The methods alloc, crLock, and acquire are part of a
library and are specified via pre- and postconditions. Methods m and n are the client code. The commented-out
specification of n illustrates one possible annotation with which m and n verify modularly. m_inl is the
method m where the call to n is inlined. P and Q denote abstract predicates. Q(?x) denotes a predicate
instance with an existentially-quantified parameter x. Proof outlines reflecting the verifier’s automatically
constructed proofs are shown in blue (where the proof outlines for m and n reflect modular proofs using n’s
commented-out specification). The verifier fails to verify the call to acquire in m_inl.

However, the proof search heuristic fails for the inlined program on the right. Here, the method
m_inl owns Q(a) and Q(b) before the call to crLock. VERIFAST’s heuristic instantiates x with b. As
a result, the call to acquire fails, since the method owns P(1,b) instead of P(1,a).

The fact that the program can be verified modularly, but fails to verify after inlining, shows that
VERIFAST’s proof search heuristics make inlining non-preserving; GRASSHOPPER’s, REFINEDC’s,
VIPER’s, and STEEL’s proof search heuristics for instantiating existential quantifiers also can lead to
non-preserving inlining for similar reasons. In all these cases, non-preserving inlining is caused by
heuristics for proof automation. The inlined program is correct and could be verified manually by
instantiating the quantifier with a.

2.2 Automatic Selection of Proof Rules

Many advanced separation logics support proof rules that manipulate resources in intricate ways,
e.g., to split and combine resources, to exchange resources, to put them under modalities, etc. Most
of these proof rules can be applied at many points in the program and proof. To avoid exploring
every possible combination, automatic SL verifiers use heuristics to decide when and how to apply
the proof rules. Some of these heuristics are based on the resources currently owned by a method and
may, thus, be affected by inlining, potentially making inlining non-preserving. For instance, CAPER
inspects the currently-owned resources to determine whether or not to create a shared memory
region. RSL-VIPER inspects the resources held by the method execution to determine the resources
obtained from an atomic read operation. Both heuristics may make inlining non-preserving.

Fig. 2 illustrates a simplified version of a heuristic used by RSL-VIPER, which makes inlining non-
preserving. The commented-out specifications for readl and read? just serve to illustrate successful
modular verification and are not (partial) annotations provided by a user. RSL-VIPER automates
the RSL logic [Vafeiadis and Narayan 2013], which associates an invariant—here represented by
the predicate instance P(1)—with each atomic memory location 1. The logic provides two proof

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAL, Article 102. Publication date: April 2023.

102:6 Thibault Dardinier, Gaurav Parthasarathy, and Peter Miiller

method r(1:Ref):(a,b:Int) method readl(l:Ref):(v:Int)
requires P(1) // requires true
{ ensures A0 { \/,/;iniﬁ:iz e v := nondetInt();
(P } Vo= vl)} if(perm(P(1)) >= 1) {
exhale P(1)
a := readl(l) i
{ P(1) } method read2(l:Ref):(v:Int) inhale A(v)
b := read2(l) // requires P(1) }
{ A(b) } // ensures A(v)
} {v:= [1]acq }

Fig. 2. Example inspired by RSL-ViPER showing that proof search algorithms may make inlining non-preserving.
Method r performs two atomic read-acquire operations on the atomic memory location 1 and returns both
values. Its specification summarizes the behavior of the code running before and after r. The precondition
P (1) provides the invariant associated with location 1. The postcondition A(b) indicates that the subsequent
code requires the assertion that depends on the second value that has been read. The code on the far right
shows the proof strategy for v := [1]acq, expressed in the VIPER intermediate language; it greedily exchanges
the invariant for location 1 by an assertion for the read value. The program can be verified modularly by
RSL-VIPER using the commented-out specifications for readl and read?2. The proof outline for r (shown
in blue) reflects the corresponding proof by RSL-VIPER for r. However, RSL-VIPER’s strategy makes inlining
non-preserving: in the inlined program, it applies the exchange to the first read operation, whereas successful
verification needs to apply it to the second.

rules for atomic reads (the complete RSL logic is more intricate). In one rule, the invariant is
consumed (before the location is read) and instead an assertion that depends on the read value is
obtained (after the read); this rule must be applied to verify read2 modularly w.r.t. its (commented-
out) annotation. In the other rule, no resource is consumed, and therefore the right to perform
such an exchange via a (future) atomic read is retained by keeping the invariant (and thus, no
assertion is obtained for the read value); this rule must be applied to verify readl modularly w.r.t.
its (commented-out) annotation. RSL-VIPER’s proof strategy always attempts to apply the first
proof rule before considering the second proof rule, that is, performs the exchange when possible.
In our example, this greedy approach causes verification of the inlined program to fail because the
first read consumes the invariant, such that no exchange can happen for the second read, and we do
not obtain the assertion A(b) for the read value. However, the program can be verified modularly
by not passing the invariant to method readl such that the heuristic is prevented from performing
the exchange for the first read. In Fig. 2, the commented-out annotations for readl and read2
serve to illustrate the annotation for this modular proof and the corresponding proof outline for
r is shown in blue. The fact that the program can be verified modularly while verification of the
inlined program fails shows that the proof search heuristic of RSL-VIPER causes inlining to be
non-preserving. The inlined program is correct and could be verified manually by applying the
proof rule that exchanges the resources only for the second read operation, which demonstrates
that the issue is, again, caused by heuristics for proof automation.

RSL-VIPER is implemented by translating the input C++ program into the VIPER intermediate
language. The proof search algorithm is represented explicitly in the VIPER program and a simplified
version is shown on the right of Fig. 2. This snippet uses two dedicated statements to manipulate
resources: inhale obtains resources and exhale releases resources. We sometimes use those opera-
tions in our examples, but no aspect of our work is specific to exhale and inhale operations. The
same effects can be obtained, for instance, by calling a library method with a corresponding pre- or
postcondition (as we do in Fig. 1). The code snippet also uses a resource introspection expression

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAL1, Article 102. Publication date: April 2023.

Verification-Preserving Inlining in Automatic Separation Logic Verifiers 102:7

perm. This expression yields the fractional ownership amount [Boyland 2003] held by the current
method execution for a given resource and is used here to determine whether the resource P(1) is
held by the current method execution.

3 SEMANTIC CONDITION: KEY IDEAS

In this section, we introduce the key ideas of the semantic condition that we define formally
in Sect. 4 and under which we prove that inlining is verification-preserving. These sections focus
on calls, but loops are handled in the IsaBELLE/HOL formalization. From a verification point of
view, loops are analogous to recursive methods, where the loop invariant acts as both the pre- and
postcondition of the method. Unrolling n loop iterations corresponds to inlining n recursive calls.

Verification-preserving inlining. Let M be a collection of methods and let s be an initial statement
that may contain calls to methods in M (and no other calls). We call (s, M) a program and we do
not mention the tuple explicitly whenever it is clear from the context. An annotation for M consists
of a pre- and postcondition for each method in M. A program (s, M) verifies modularly w.r.t. an
annotation A for M, if all methods in M verify modularly w.r.t. A and s verifies modularly w.r.t. to
A (where method calls are verified using only their pre- and postconditions).

The inlined version of a program (s, M) with bound n is the statement s with all calls substituted
by their bodies up to a call stack size of n (library calls may still be treated modularly). Calls that
exceed the bound n are replaced by assume false, such that the code afterwards verifies trivially.

Inlining is verification-preserving for a program (s, M) with bound n if the following holds: If the
program (s, M) verifies modularly w.r.t. some annotation, then the program inlined with bound n
also verifies.! Consequently, if inlining is verification-preserving for a program then each error in
the inlined program is a true error, i.e., corresponds to an error in the original program.

Semantic condition. The semantic condition (formalized in Def. 4.4, see Sect. 4) is a property
of a program that guarantees (but is not equivalent to) verification-preserving inlining: if the
semantic condition holds for a statement s, a collection of methods M, and an inlining bound n,
then inlining the program (s, M) with bound n is verification-preserving. The semantic condition
is parameterized by a resource bound (a set of states), which we explain in Sect. 3.4. Informally, the
semantic condition holds iff:

(1) entire inlined method bodies satisfy bounded framing, and

(2) call-free statements between? method calls satisfy bounded monotonicity, which is defined as

the conjunction of bounded safety monotonicity and bounded output monotonicity.

The rest of this section describes and illustrates the three key properties used in this definition:
framing (Sect. 3.1), safety monotonicity (Sect. 3.2), and output monotonicity (Sect. 3.3).> Sect. 3.4
explains why it is sufficient to consider bounded relaxations of these properties. Finally, Sect. 3.5
shows how we deal with partially-annotated programs.

Verifier semantics. Our definition of verification-preserving inlining is based on the proof rules as
applied by a given SL verifier. Thus, when we write that a program verifies, we mean that verification
succeeds in a given verifier (using that verifier’s proof search strategies). We refer to the proof
rules as applied by a verifier as the verifier semantics of that tool. For example, verification of the
inlined program from Fig. 1 in a verifier that does not apply VERIFAsT’s proof search heuristic

IThe definition of verification-preserving inlining is slightly different when the program already contains partial annotations
as we discuss in Sect. 3.5 and Sect. 4.

ZStatements before the first method call and after the last method call are also included.

3 As we explain in this section, framing is stronger than both safety and output monotonicity; requiring these weaker
properties for call-free statements is sufficient for inlining to be verification-preserving.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAL, Article 102. Publication date: April 2023.

102:8 Thibault Dardinier, Gaurav Parthasarathy, and Peter Miiller

method client(x:Ref) method callee(x:Ref) method client_inl(x:Ref)
requires P(x) // requires [0.5]P(x) requires P(x)
ensures [0.5]P(x) // ensures x.f &5 _ ensures [0.5]P(x) // fails
* X.fg_ { * X-f'o;i_
{ { [0.5]P(x) } {
callee(x) open P(x) {P(x) }
} (x.f5 3 open P(x)
var v := x.f {X.f»—>_}f
0.5 var v := X.
{x.f5_1} Cx.fs)
’ }

Fig. 3. A simple example inspired by VERIFAST showing that inlining (with bound 1) can be non-preserving if a
method body (in this case callee’s body) is not framing. Predicate P (x) is a predicate instance with predicate
body x.f + _, which can be automatically split into two halves [Dardinier et al. 2022a]: [0.5]P(x) and
[0.5]P(x).x.f KA _ denotes the fractional points-to assertion, representing fractional ownership amount
f for x.f. open P(x) is a ghost operation in VERIFAST that exchanges all the ownership of a predicate
instance held by the method execution for ownership of its body, which is needed to justify reading x. f on
the next line. Both methods client and callee verify modularly with the commented-out specification. In
the modular verification of callee, open P(x) removes half ownership of P(x), whereas it removes the
full ownership in the inlined version of client (shown on the right), which is why the postcondition in the
inlined version of client does not verify.

could succeed and, thus, inlining could be verification-preserving. It is the automation embodied in
the verifier semantics of the used verifier (here, VERIFAST) that causes verification to fail.

Automatic SL verifiers track the resources held by a method execution. Thus, resources are a part
of an SL verifier’s state model, in addition to the program heap and store. For example, the state
models of both VIPER and VERIFAST contain a mapping from heap locations (and predicate instances)
to fractional permission amounts following the fractional permission extension of SL [Boyland
2003]. For heap locations, permissions are a fraction between 0 and 1 (a non-zero fraction permits
reading, while the fraction 1 permits writing).

Program operations may observe and modify the held permissions. E.g., the resource introspection
expression perm(P (1)) on the right of Fig. 2 evaluates to the permission amount held in the verifier’s
state. The held permissions are modified, for instance, when an object is being allocated, via a
method call that is treated modularly, or via an operation used to direct the verifier’s proof search.
We often model modifications of the held permissions via two dedicated statements: inhale A adds
the resources specified by the assertion A to the state; exhale A removes these resources (following
some heuristics when the assertion A is imprecise) or fails if they are not held in the current state.

3.1 Framing

Automatic SL verifiers verify method calls modularly by releasing (exhaling) the resources specified
by the callee’s precondition and then obtaining (inhaling) the resources specified by its postcondition.
Resources held by the caller that are not exhaled are retained across the call, which is justified by
separation logic’s frame rule. The frame rule states that if the Hoare triple {P} s {Q} holds then s
also verifies in a larger state P = R, and the additional resources R remain unchanged, that is, the
triple {P = R} s {Q = R} holds (provided that s does not modify any variable in R).

However, the frame rule does not always apply to a verifier semantics, because of the heuristics
and proof search algorithms used by automatic SL verifiers. As shown in Sect. 2, their behavior

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAL1, Article 102. Publication date: April 2023.

Verification-Preserving Inlining in Automatic Separation Logic Verifiers 102:9

may depend on the resources held by the method execution. In particular, they may not preserve
the additional resources R across an execution of s. As a result, even if a verifier is able to prove
{P} s {Q}, it may not be able to prove {P = R} s {Q * R}, which may lead to non-preserving inlining.

To guarantee verification-preserving inlining, the semantic condition requires entire inlined
method bodies to be framing.* Informally, a statement s is framing (in a verifier) iff for all P, Q, and
R, if the verifier can prove that {P} s {Q} holds then it can also prove that {P * R} s {Q * R} holds.
Framing is formally defined in Sect. 4 (Def. 4.3).

Fig. 3 shows a simple VERIFAST example where inlining is non-preserving because callee’s
body is not framing: VERIFAST is able to prove {[0.5]P(x)} open P(x) {x.f N _} (in the modular
case in the middle), but not {[0.5]P(x) * [0.5]P(x)} open P(x) {x.f st _ % [0.5]P(x)} (in the
inlined case on the right). In other words, VERIFAST does not frame the ownership of P(x) around
open P(x), since open P(x) consumes all the ownership of P(x) held by the method execution.

Both examples discussed in Sect. 2 contain method bodies that are not framing. In Fig. 1, method
n’s body is not framing, because ownership of Q(x) (for some x) might be consumed by crLock(),
and thus might not be framed around crLock() in the inlined program. Similarly, in Fig. 2, the
bodies of methods readl and read?2 are not framing, because ownership of P(1) (for some 1) might
be consumed by [1]acq, and thus, might not be framed around [1]acq in the inlined program.

Compound statements. It is important to note that our semantic condition requires the entire
body of an inlined method to be framing, but not necessarily every individual statement in the body.
This difference is crucial to capture many realistic methods that contain statements that are not
framing, but nevertheless can be inlined in a verification-preserving way. E.g., consider a method
whose body contains the following common VERIFAST pattern: open [?f]P(x,v); r := x.h;
close [f]P(x,v); return r, where P(x,v) is a predicate instance with predicate body x.h — v,
open is a ghost operation that exchanges ownership of a predicate instance for ownership of its
body, and close performs the opposite operation. Here, open [?f]P(x,v) exchanges a fraction

f of ownership of P(x,v) for x.h s v, where f is an existentially-quantified positive fraction.
After reading the value of x.h, f is used to restore the initial ownership of P(x,v). In general, the
more ownership of P(x,v) in the heap, the higher f will be instantiated by VERIFAST’s heuristic.
Thus, open [?f]P(x,V) is not framing, because ownership of P(x,v) cannot be framed around it
in general. However, the method body as a whole is framing, and can thus can be captured by the
semantic condition.

3.2 Safety Monotonicity

During modular verification, each method execution starts out owning the resources described
by its precondition. In contrast, at the same program point in the inlined program, the method
owns all resources owned by the caller, which is a superset of those required by any precondition
with which the original program verifies modularly. Thus, a statement in the inlined program will
typically be verified in a state with more resources than the same statement in the original program.

To ensure that these additional resources do not lead to verification errors (and thereby to non-
preserving inlining), our semantic condition requires that successful verification of a statement in
some state implies successful verification in any larger state (states with more resources): Statements
have to be safety monotonic. A statement s is safety monotonic if successful verification of s starting
in state ¢ implies successful verification of s in any larger state ¢’, i.e., if ¢’ contains at least all the

“In general, this requirement applies to all statements that are getting inlined, including loops. Since we focus exclusively
on the inlining of method calls here, the call-free statements between calls need not be framing.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAL, Article 102. Publication date: April 2023.

102:10 Thibault Dardinier, Gaurav Parthasarathy, and Peter Miiller

method client() method callee(x:Ref): method client_inl()
{ (a,b:Ref) {
a, b := callee() // requires true a := alloc()
{ Q(a } // ensures Q(a) { Q(a) }
1 := crlock() { b := alloc()
{ P(1,a) } a := alloc() { Q(a) = Q(b) }
acquire(l, a) { Q(a) } 1 := crLock()
{ ...} b := alloc() { Q(a) » P(1,b) }
} { QCa) * Q(b) } acquire(l, a) // fails
} }

Fig. 4. Asimplified VERIFAST example showing that inlining (with bound 1) can be non-preserving if a call-free
statement is not safety monotonic due to VERIFAST’s heuristic for imprecise assertions. The methods alloc,
crLock, and acquire are defined in Fig. 1. Both methods client and callee verify modularly with the
commented-out specification. In particular, because of its specification, method callee ensures only Q(a)
while leaking Q(b), and thus method client loses the ownership of Q(b) with the call to callee, which
makes the call to acquire(1l, a) succeed. However, the inlined version of client (shown on the right)
does not verify, since the ownership of Q(b) is not leaked.

resources in ¢ and agrees with ¢ on the common resources (and variables).” As we will discuss in
Sect. 7, safety monotonicity has been explored in the context of separation logics, but not applied
to inlining. Note that framing implies safety monotonicity. Consequently, our semantic condition
requires safety monotonicity explicitly only for (potentially compound) call-free statements between
calls (which includes the statement after the last method call in the initial statement).

Fig. 4 shows how a violation of safety monotonicity may lead to non-preserving inlining. In this
simplified example, 1 := crLock(); acquire(l, a) is not safety monotonic, since it verifies in a
state with ownership of only Q(a), but fails in a larger state with ownership of both Q(a) and Q(b).

3.3 Output Monotonicity

As explained above, a statement s in an inlined program is typically verified in a larger state than
in the orginal program. Safety monotonocity ensures that the additional resources do not cause
verification of s to fail. However, they could affect the behavior of s such that s removes more
resources when executed in a larger state and, thereby, causes verification of subsequent statements
to fail. Fig. 5 illustrates this problem. Method callee’s body is framing, and the if statement in
method client is safety monotonic. Nevertheless, inlining is not verification-preserving because
executing the if statement in a state with half ownership of x.f leaves the state unchanged,
whereas executing it in a state with full ownership of x. f results in a state with no ownership of
x.f. This causes verification of the subsequent assignment to v in the inlined program to fail.

To avoid this problem, our semantic condition requires statements to be output monotonic, in
addition to being safety monotonic. A statement that is both safety and output monotonic is called
monotonic.’® A statement s is output monotonic if executing s in a state ¢’ that is larger than ¢ results
in a final state that is larger than the state obtained by executing s from ¢ (assuming s verifies in
both states).” Output monotonicity constrains the effect of a statement on subsequent statements.

SInformally, in terms of Hoare triples, s is safety monotonic iff, for all P and R, if the verifier can prove {P} s {true} then it
can also prove {P « R} s {true}.
SInformally, in terms of Hoare triples, s is monotonic iff, for all P, Q, and R, if the verifier can prove {P} s {Q} then it can
also prove {P * R} s {Q = true}.
7For non-deterministic programs, one must lift the ordering to sets of states. We ignore this aspect here for simplicity, but
show the lifted version in Sect. 4.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAL1, Article 102. Publication date: April 2023.

Verification-Preserving Inlining in Automatic Separation Logic Verifiers 102:11

method client(x:Ref) method callee(x:Ref) method client_inl(x:Ref)
requires x.f— _ : (v:Int) requires X.f— _
ensures true // requires x.f s ensures true

{ // ensures true {
{x.f—_13 { {x.f—_1}
v := callee(x) vi=x.f+1 v :i=x.fT+1
{x.f8_3 } {x.f-_1%
if (perm(x.f) >= 1) { if (perm(x.f) >= 1) {

exhale x.f — _ exhale x.f+— _

} }
Ex.EH) { true } |
v i= callee(x) v :=x.f +1 // fails
{ true } ¥

}

Fig. 5. Asimplified example showing that inlining (with bound 1) can be non-preserving if a call-free statement
is not output monotonic. The statement if (perm(x.f) >= 1) { exhalex.f — _ } is safety monotonic
but not output monotonic. Both methods client and callee verify modularly with the commented-out
specification. In particular, because of its specification, method callee leaks ownership of x.f, and thus
method client loses half ownership of x. f with each call to callee. Therefore, the if branch is unreachable
in the modular verification of method client. However, the inlined version of client (shown on the right)
does not verify. Indeed no ownership of x.f is leaked in the inlined program, and thus the if branch is
executed, which removes all ownership of x.f. Verification of the line v := x.f + 1 subsequently fails,
because some ownership is required to read x. f’s value.

It rejects statements that may remove more resources when executed in a larger state, thereby
causing the verification of subsequent statements to fail. Note that output monotonicity does not
subsume safety monotonicity. As an example, the statement assert perm(x.f) == 0 is not safety
monotonic, since it only verifies in a state with no ownership of x.f. However, this statement
is output monotonic, since it does not add or remove any resources. Since framing implies both
safety and output monotonicity, our semantic condition requires monotonicity explicitly only for
(potentially compound) call-free statements between calls.

The if statement in Fig. 5 is not output monotonic, which causes inlining to be non-preserving.
As another example, the statement 1 := crLock() from Fig. 1 is not output monotonic. Indeed,
executing it in a state ¢’ with ownership of both Q(a) and Q(b) might result in a state with
ownership of both Q(a) and P(1,b), while executing it in a state ¢ with ownership of Q(a) only
results in a state with ownership of P(1,a). While ¢’ is a state with more resources than ¢, the
resulting states are not comparable, which violates output monotonicity.

Practical use cases. While any framing statement is monotonic, the converse does not hold.

In particular, a number of useful patterns are monotonic but not framing. One example is the
erm(x.f) . . .
statement exhale x.£ " > _, which releases all ownership to x. f held by the method execution.

It is monotonic since it always verifies and the resulting state contains no permission to x.f, but it
is not framing because permission to x.f cannot be framed around it. A similar statement is used
in RSL-VIPER to transfer resources under a modality. The statement open P in VERIFAST, where
P is a predicate, behaves similarly, as explained in Sect. 3.1. Even though the statement open P is
monotonic, it is not framing, since, in general, the more ownership of P is held, the more ownership
of P is exchanged, and thus ownership of P cannot be framed around this statement. Another
example of a monotonic statement that is not framing is releasing some existentially-quantified

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAL, Article 102. Publication date: April 2023.

102:12 Thibault Dardinier, Gaurav Parthasarathy, and Peter Miiller

fractional ownership of a resource (wildcard in VIPER, dummy or existential fraction in VERIFAST),
e.g., when calling a trusted library function that requires read access to a heap location.

3.4 Bounded Relaxations

Requiring (1) inlined method bodies to be framing and (2) call-free statements between calls to
be monotonic is sufficient to guarantee verification-preserving inlining, but overly restrictive.
The framing and (safety and output) monotonicity properties presented so far quantify over two
arbitrary states ¢ < ¢’. These properties consider arbitrary executions of a statement s, instead of
considering what resources the inlined and original programs may actually own before executing s.
The example from Fig. 1 illustrates why this condition is too restrictive. The statement s = (1 :=
crLock()) is not monotonic (and thus not framing), as explained in Sect. 3.3. However, assume that
we remove b := alloc() from the example. In this case, inlining is verification-preserving, since
the heuristic can instantiate Q(?x) with Q(a) only. Nevertheless, our monotonicity requirement
rejects this program, since s is not output monotonic. s violates output monotonicity when ¢’ owns
both Q(a) and Q(b) but ¢ owns Q(a) only. This violation is irrelevant in our modified example, since
s is only executed in states that own at most Q(a) (in both the inlined and the original program).

Bounded properties. To take into account which states can actually occur in executions of the
inlined and the original program, our semantic condition requires only bounded relaxations of our
framing and monotonicity properties. For output monotonicity, the bounded version is parame-
terized by a set of states T (the resource bound) and restricts ¢, ¢’ to be smaller than at least one
state in T. The resource bound is set to the possible program states in the inlined program at the
relevant point. The bounded relaxations of framing and safety monotonicity are analogous.

In our modified example, the statement 1 := crLock() is bounded output monotonic w.r.t.
the inlined program state ¢, before this statement, since ¢, owns Q(a) only, and thus, ¢ and ¢’
over which the condition quantifies cannot own more. In the following, when we refer to safety
monotonicity, output monotonicity, or framing, we mean the bounded relaxations. We explain how
to automatically check these properties in Sect. 5.

Practical use cases. The bounded relaxation is crucial for VERIFAST and GRASSHOPPER, as we show
in Sect. 6. Many methods in their test suites contain existentially-quantified (and thus imprecise)
assertions. Without the relaxation, none of these methods would satisfy the semantic condition,
even though many of them can be inlined in a verification-preserving way in caller contexts where
the existential quantifications are unambiguous, as in our modified example.

The bounded relaxation is also crucial for NAGINI. Python allows one to create object fields dynam-
ically. NAGINT encodes the Python assignment x.f = v into VIPER as follows, where P(x, f) repre-
sents the permission to create the field f of x: if (perm(P(x,f)) > 0) { exhale P(x,f); inhale
x.f— _3}; x.f := v. This encoding replaces the resource P(x, f), if available, with ownership
of the field. While this encoding is not unbounded safety monotonic, it is always bounded safety
monotonic (and also framing), because NAGINI ensures that x.f + _ and any ownership of P(x, f)
are mutually exclusive and hence no state in the bound T contains both. Intuitively, NAGINT’s proof
search heuristics never has a choice which resource to use and, thus, cannot err.

3.5 Inlining Partial Annotations

We conclude this section by first showing how we inline calls with partial annotations (i.e., where a
subset of methods have annotations that may themselves be incomplete) and then explaining how
to generalize the notion of verification-preserving inlining in the presence of partial annotations.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAL1, Article 102. Publication date: April 2023.

Verification-Preserving Inlining in Automatic Separation Logic Verifiers 102:13

h :Ref
method c(x,y:Ref) assert [?f]P(x,v)

method b(x,v:Ref) requires [?f]P(x,Vv)
. open [f]P(x,v)
requires P(x,v) *y.hw— _ ensures [f]P(x,v)
v.h :=x.h +1
ensures P(x,v) *xy.h—v { open [f]P(x,V) close [£]P(x,v)
{ c(x,y) } yv.h :=x.h +1 ’

close [£1P(x,v) } assert [f]P(x,V)

Fig. 6. A VERIFAST example showing verification-preserving inlining in the presence of ghost code and partial
annotations. ¢’s ghost code (in red) requires c’s partial specification (in blue) to bind the existential parameter
f. Predicate P(x, V) is a predicate instance with predicate body x.h + v. The snippet on the very right
shows the inlined body of b when c’s specification and ghost code are included.

Verification-preserving inlining with partial annotations. As we explained in Sect. 1, inlining is a
useful stepping stone toward modular verification, since it allows one to detect errors before adding
annotations and to validate partial annotations that arise during the iterative process of annotating
methods (e.g., by iteratively adding conjuncts to pre- and postconditions). A partial annotation is
an annotation that may not yet contain enough information in order for modular verification to
succeed. Verifying callees modularly with partial annotations may fail, e.g., because the callee’s
precondition does not provide all resources needed to verify its body. Therefore, inlining with
partial annotations still reasons about calls by replacing them by the body of the callee method.
Nevertheless, in order to validate partial annotations, inlining proves that they actually hold by
asserting them in the inlined program. More precisely, whenever a call to a method m with a partial
annotation is inlined, the inlined program asserts m’s precondition, then executes m’s body, and
finally asserts m’s postcondition. Asserting the conditions checks that the resources they describe
are held by the current method execution, but does not add or remove any resources.

The definition of verification-preserving inlining is adjusted accordingly in the presence of partial
annotations. Inlining a program with bound n and partial annotations A is verification-preserving
if the following holds: If the program verifies modularly w.r.t. some annotation that is more complete
than A (i.e., all method pre- and postconditions are stronger than the corresponding pre- and
postconditions in A), then the program inlined with bound n and partial annotations A verifies.
Thus, if inlining with A is verification-preserving for a program, then an error in the inlined
program implies that the original program cannot be verified modularly for any annotation that is
more complete than A (e.g., no conjuncts can be added to A to make the original program verify).

We also adjust the semantic condition to take partial annotations into account, by first applying
a syntactic transformation on the program that asserts the partial annotations before and after
method calls (we make this precise in the next section).

Example. Consider the example showing verification-preserving inlining in Fig. 6, which includes
a partial annotation for method ¢ and ghost code in ¢’s method body. This example shows a scenario
where (1) verification-preserving inlining can be used to find errors with partial annotations, and
(2) inlining the method body makes sense only if one takes partial annotations into account. By
asserting partial annotations in the inlined program, our technique handles both aspects.

This example is based on the common VERIFAST pattern already described in Sect. 3.1. The
existential quantification over £ in c’s specification enables more possible callers and transfers back
the initial ownership. The ghost operations open [f]P(x,v) and close [f]P(x,V) are required,
since the verifier does not automatically unroll P(x,v) to justify reading x.h (the predicate body of
P(x,v) is x.h — v). These operations have a meaning only due to c’s precondition that binds f,

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAL, Article 102. Publication date: April 2023.

102:14 Thibault Dardinier, Gaurav Parthasarathy, and Peter Miiller

which shows that we need to inline partial annotations. Note that ¢’s specification is truly partial,
since ownership of y.h would be required to justify the assignment in a modular proof.

The inlined body of b with its specification and ghost code is shown on the right of Fig. 6.
Asserting the precondition [?£]1P(x,v) checks whether some ownership of P(x,v) is held and £
binds the fractional ownership amount that VERIFAST picks to prove the assertion. In this case,
VERIFAST’s heuristic binds f to the currently-owned fraction of P(x,v), i.e., to 1.

The inlined program fails, since y.h does not hold the same value as x.h, which is required by
b’s postcondition. Since there is no specification for c that can make b verify, inlining is verification-
preserving and thus, inlining detects a true error without the user having to provide ownership of
y.hin c’s specification. The semantic condition holds in this example, because the inlined body of
¢ (including the assert statements) as a whole satisfies the frame rule.

4 VERIFICATION-PRESERVING INLINING

In Sect. 3, we motivated the building blocks of the semantic condition. In this section, we formally
define the semantic condition and prove that inlining is verification-preserving when the semantic
condition holds. In order to express this formal result in a general way, we define a parametric
verification language that captures the essence of verification languages such as GRASSHOPPER,
VERIFAST, and VIPER. To capture different models of resources, the states of this language are
elements of a separation algebra. We formalize inlining and the semantic condition for this language,
and prove that inlining is verification-preserving under the semantic condition (Theorem 4.5). We
first consider a version of inlining that ignores annotations, and then show how to leverage this
version to support inlining with partial annotations. All results presented in this section have been
mechanized in IsABELLE/HOL [Dardinier et al. 2023]. As explained in Sect. 3, this section focuses
on methods calls, but loops are handled in App. A and App. B of the TR, and in the mechanization.

4.1 State Model and Verification Language

We present the essential aspects of our verification language here; additional formal definitions are
given in App. A of the TR.

State model. To reflect the verifier semantics (see Sect. 3), our state model contains separation logic
resources in addition to a standard state with local variables and a heap. The models of verifiers such
as GRASSHOPPER, VERIFAST, or VIPER are essentially captured by a separation algebra [Calcagno
et al. 2007; Dockins et al. 2009] where X is the set of states, @ : X X ¥ — X is a partial operation
that is commutative and associative, and u € X is a neutral element for ®. Intuitively, two states
can be added if they agree on the values of common local variables and heap locations and if their
resources can be combined in a consistent way. The addition then contains the union of their local
variables and heap values, and the combination of their resources. We write p#¢’ if ¢ ® ¢’ is defined,
and ¢’ < ¢ & (" € Z. ¢ = ¢’ ® ¢”"). We lift the operators @ and < to sets of states T and U,
where T@U 2 {p®¢'lp e TAQ €eUAp#p’}andU < T & (Vp e T. 3¢’ € U. ¢’ < 9).

Language and semantics. We consider a parametric verification language with the previously-
described state model and the following statements:

S:=S; S | if (+) {S} else {S} | while (A) {S} | V = m(V) | skip
| assume A | assert A | inhale A | exhale A | var v | havoc v | custom O

-
where A represents assertions and V lists of variable identifiers. O is a parameter of the language
used to represent verifier-specific statements, such as open and close in VERIFAST.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAL1, Article 102. Publication date: April 2023.

Verification-Preserving Inlining in Automatic Separation Logic Verifiers 102:15

Most non-custom statements of this language are standard and have the usual semantics. Our if
statement is non-deterministic and can model both non-deterministic choice and (by using assume
statements in the branches) deterministic branching. As explained earlier, inhale A combines the
current verification state with a state satisfying A, while exhale A removes a state satisfying A
from the current verification state (and fails if this is not possible). During verification of inhale A,
the verifier must consider all possible states that satisfy A. However, for exhale A it can choose
how to satisfy A, for instance, how to instantiate an existential quantifier. This choice is embodied
by a heuristic, which is a parameter of our verifier semantics. The only assumptions we make
about the verifier’s heuristics is that they are local and deterministic, i.e., the choices made by the
verifier are fully determined by the current verification state. For instance, for the same verification
state, a heuristic will always make the same choice for an existential quantifier. This is the case for
verifiers such as GRASSHOPPER, VERIFAST, and verifiers built on top of VIPER. In contrast, CAPER
uses backtracking, which is not local but depends on the whole program.

For an annotation A containing pre- and postconditions for every method (transitively) called
from the statement s, we write ver # (¢, s) if s verifies modularly for executions starting in the initial
state ¢, where method calls are verified using only their pre- and postconditions in A. In this case,
we define sem # (¢, s) as the set of states that are reached after executing s in the state ¢ w.r.t. A.
Note that ver # (¢, s) and sem # (¢, s) model the verifier semantics (as introduced in Sect. 3).

4.2 Inlining without Annotations

We now formally define inlining and the semantic condition for our language, and then prove that
the latter implies verification-preserving inlining. We ignore annotations here, but they are handled
in Sect. 4.3. While inlining, we need to keep track of the already-used variables, to avoid variable
capturing. For simplicity, we ignore all renaming issues here, but our IsABELLE/HOL formalization
covers this aspect. The inlining function inl};(s) yields the statement s where all calls to methods
from M are substituted by their bodies up to the inlining bound n (annotations are ignored):

Definition 4.1. Inlining (ignoring renaming issues and loops).

inly(s) £ s (if s is call-free) inl?\,l(; = m(;)) £ assume L
il (s1; s2) 2 inl%, (s1); inl?y (s2) inl (Y = m(X)) 2 inl?(sm)

inly (if (%) {s1} else {sp}) £ if (*) {inl};(s1)} else {inl};(s2)}

where sy, is the body of method m € M with arguments correctly substituted.

When the inlining bound n has reached 0, additional calls render the execution infeasible.
Otherwise, a method call is replaced by the method body (with suitable substitutions, omitted here).

Monotonicity and framing. Before we show the semantic condition, we formalize its key building
blocks. To specify the bounded relaxation (motivated in Sect. 3.4), we define the shorthand (¢ <
T) £ (3¢’ € T.¢p < ¢’). The following definition combines the bounded safety and output
monotonicity properties motivated in Sect. 3.2 and Sect. 3.3:

Definition 4.2. Bounded safety and output monotonicity.

monoz(T,s)=(Ve1, 02 € .01 < o2 < T A vera(e1,s)
= vera(gzs) A (safety monotonicity)

sem(¢1,s) < sema (@ $)) (output monotonicity)

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAL, Article 102. Publication date: April 2023.

102:16 Thibault Dardinier, Gaurav Parthasarathy, and Peter Miiller

mono# (T, s) states that if s verifies in a state ¢q, then s also verifies in a larger state ¢, (safety

monotonicity), and executing s in ¢, results in a larger set of states than executing s in ¢; (output

monotonicity). ¢, < T expresses that the larger state ¢, is smaller than at least one state of T.
The following definition captures the bounded framing property motivated in Sect. 3.1:

Definition 4.3. Bounded framing.?
framing 4(T,s)=(NVo,r € Z. p#r Ao ®r < T A verz(¢,s)
= vera(p ®r,s) Asema(p,s) ®{r} < semau(p®r,s))
framing 4 (T, s) holds iff, for any state (smaller than some state in T) that can be decomposed into

@ @ r s.t. s verifies in g, it holds that executing s in the state ¢ & r verifies and results in a larger’
set of states than executing s in ¢ and adding the frame r afterwards (recall that we have lifted the

perm(x.f)

® and < operators to sets of states). As an example, the statement exhale x.f " _is framing
if and only if no state in T contains non-zero ownership of x.f. Otherwise, we can prove that it is
not framing, by choosing a frame r with non-zero ownership of x. f.

Semantic condition. For an inlining bound n, a set of methods M, a set of states T, and a statement
s, we denote our semantic condition by SC;\’/I(T, s), and define it as follows (where the set of states
T is the bound we use for mono and framing):

Definition 4.4. Semantic condition (ignoring renaming issues and loops).
SC (T, s)2monoc (T, s) (if s is call-free)
SCH(T, s1; 52)2SC} (T, s1) A SChy(seme (T, inly;(s1)), s2)
SCH(T,if (%) {s1} else {s3})=SC},(T, s1) A SC3(T,s2)
— -
SCg/I(T, y =m(x))=T
SChHU(T, ; = m(;))éframinge(T, inly(sm)) A SCh (T, sm)

where € is the empty annotation, s, is the body of method m € M with arguments correctly
substituted, and sema (T, $)= Uyes| (3¢ eT.p 20" Avera(p.s) (S€Ma(@, s)).

As explained in Sect. 3, we require call-free statements to be mono, and inlined method bodies to
be framing. For the sequential composition, we need the auxiliary function sem, which applies
the sem function to all states ¢ in which s verifies and that is smaller than some state in T. This
auxiliary function is required to compute the right resource bound for the framing and monotonicity
properties, in order to ensure verification-preserving inlining. Note that the semantic condition does
not depend on any annotation, since mono and framing are enforced only on call-free statements.

Verification-preserving inlining. Using inlining and the semantic condition, we can express and
prove the following theorem (under some standard well-formedness conditions).

THEOREM 4.5. Verification-preserving inlining. For any well-formed program (s, M) for which
SC ({u},5)'" holds, if there exists an annotation A for M such that:
(1) all methods in M verify modularly w.r.t. A, and

8For the sake of presentation, we ignore the (usual) side condition that r does not contain variables modified by the statement
s, but this is handled in our IsABELLE/HOL formalization.

°Tt would also be correct to require semz (¢ ® r,s) = semz (¢,s) ® {r} instead of semg (@,s) ® {r} < sema(p & 1,s).
However, there are cases where having more resources available leads to more resources being generated by a statement
(e.g., changing the modality of a resource in RSL-Viper), and these cases are captured only by the latter (weaker) requirement.
10Recall that u is the neutral element of @, that is, the empty state.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAL1, Article 102. Publication date: April 2023.

Verification-Preserving Inlining in Automatic Separation Logic Verifiers 102:17

(2) the initial statement s verifies modularly w.r.t. A, that is, ver z(u, s),
then the program (s, M) inlined with the inlining bound n verifies: ver (u, inly(s)).

Proor skeTcH. We prove the following invariant relating the original and the inlined program
(assuming the semantic condition holds and the original program verifies modularly): The verifica-
tion state of the inlined program has at least as many resources as the corresponding verification
state during modular verification of the original program. Formally, we prove that, for any two
states ¢ < ¢’ smaller than some state in the inlined program at the relevant point (i.e., the resource
bound), if ver z (¢, s) holds, then vers(¢’, inl};(s)) and semz(p,s) < semc(¢’, inly,(s)) hold. We
prove this invariant to hold before and after every method call (and every loop iteration), by
induction on the structure of the inlined program. In the case where we inline a method call, we
know that this method call has been modularly verified using the frame rule. We use the fact that
the inlined method body is framing (from the semantic condition) to mimic the application of the
frame rule for the inlined program. In the case of a call-free program statement, we use the fact that
this call-free statement is monotonic to prove that it preserves the aforementioned invariant. O

Since inlining and the semantic condition do not depend on any annotation, this theorem implies
the following result, which we are mostly interested in and have proved in IsaABELLE/HOL: If the
verification of the inlined program fails and the semantic condition holds, then there does not exist
an annotation such that the original program verifies modularly w.r.t. this annotation. In other
words, any error in the inlined program corresponds to a true error in the original program.

4.3 Inlining with Partial Annotations

We extend the formalization to handle partially-annotated programs in two steps: We first apply a
syntactic transformation assertAnnot on the program that adds assert statements to check method
specifications, and then inline the resulting program using the annotation-agnostic inl function
defined in Sect. 4.2. This two-step approach allows us to leverage our previous results to prove that
the semantic condition guarantees that inlining with partial annotations is verification-preserving
(Theorem 4.7), which we have also formalized and proved in IsaABELLE/HOL [Dardinier et al. 2023].

Definition 4.6. The assertAnnot syntactic transformation.
Let (s, M) be a program with an annotation A. assertAnnot # (s, M) returns the program
(assertAnnotStmt 7 (s), assertAnnotMethods 7 (M)). assertAnnotStmt #(s) asserts the method pre-
condition (resp. postcondltlon) before (resp. after) each method call in s. In particular,
assertAnnotStmty;(y =m(x)) 2 assert P * true; y =m(x) assert Q = true where P (resp. Q) is
method m’s precondition (resp. postcondition) in A with the arguments correctly substituted.
assertAnnotMethods(M) returns the same methods as M, but where the method body s, of m € M
is modified to check the pre- and postcondition of m and all methods it calls: assert P true;
assertAnnotStmtp (sp,); assert Q * true, where P (resp. Q) is m’s precondition (resp. postcondition)
in A with the arguments correctly substituted.

Given a program (s, M), a bound n, and an annotation A, we define its inlined version with
partial annotations as inlj'(,fﬂ (sz) where (s, Mg) = assertAnnot # (s, M). For each call, the resulting
inlined program asserts the precondition right before the call and also at the beginning of the callee
(analogously for the postcondition). While it seems redundant to assert the precondition twice in
the inlined program, the second assertion right at the beginning of the callee makes the semantic
condition defined in Sect. 4.2 more precise: The assertion forces properties on the inlined method
body to only take into account states at the beginning of the body that satisfy the precondition (and
analogously for the postcondition). Note that conjoining the precondition (resp. postcondition) with
true in assertAnnot is crucial for verifiers based on classical SL (such as GRASSHOPPER), because for

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAL, Article 102. Publication date: April 2023.

102:18 Thibault Dardinier, Gaurav Parthasarathy, and Peter Miiller

calls one must check that the caller context has at least the resources specified by the precondition
(resp. postcondition) before the call (resp. after the call).
We can now state and prove the following theorem:

THEOREM 4.7. Verification-preserving inlining with partial annotations.
Let (s, M) be a well-formed program with annotations A and B s.t. B is more complete than A
(i.e., all method pre- and postconditions in B are logically stronger than the corresponding pre- and
postconditions in A), and let (sa, Ma) = assertAnnot (s, M). If

(1) SCr, ({u}, s) holds, and

(2) all methods in M verify modularly w.rt. 8, and

(3) the initial statement s verifies modularly w.r.t. B that is, verg(u, s),
then the program (s.z, M#) inlined with annotation A and inlining bound n verifies: ver. (u, inl]’\’,lﬂ (sa)).

PRroOF SKETCH. Let (sg, Mg) = assertAnnotg(s, M). Using (2) and (3), we prove that (sg, Mg)
verifies modularly w.r.t. 8: This holds because the additional assertions in (sg, Mg) reflect what
must hold before and after each call when modularly verifying w.r.t. 8. Moreover, using (1) and
the fact that 8 is more complete than A, we prove that SCy, ({u}, sg) holds (using that (s#, M#)
and (sg, Mg) differ only in their assert statements). We can now apply Theorem 4.5 to (sg, Mg)
with annotation B, which gives us ver¢ (u, ian,,B (sg)). This implies ver (u, inlj'(,,ﬂ (s#)), because the
statements ian,IB (sg) and inlx,fﬂ (s)) differ only in their assert statements, and, since 8 is more
complete than A, successful verification of the assert statements in inly; (sg) implies successful
verification of the assert statements in inl;\’,[ﬂ (sa). O

Similarly to Theorem 4.5, we are particularly interested in the following corollary, which we
have proved in IsABELLE/HOL: If SCy,, ({u}, s#) holds, and verification of inl;\’,Iﬂ (sz) fails, then
there does not exist an annotation B more complete than A such that (s, M) verifies modularly
w.r.t. B. That is, there is no way to complete the partial annotation A (e.g., by adding conjuncts to
pre- or postconditions) such that the program verifies modularly.

5 AUTOMATION FOR VERIFICATION-PRESERVING INLINING

Theorems 4.5 and 4.7 from Sect. 4 state that errors in the inlined program correspond to true errors
in the original program, provided that the semantic condition holds for this program and the inlining
bound. While inlining (Def. 4.1) and the syntactic transformation (Def. 4.6) are straightforward to
implement, checking the semantic condition directly is challenging. Both the mono and framing
properties are hyperproperties [Clarkson and Schneider 2008] (properties of multiple executions)
that combine universal and existential quantification over states. Automatic program verifiers can
check properties for all executions, but cannot reason about the existence of executions. To work
around this limitation, we present two conservative approximations of the semantic condition that
can be checked syntactically and with a standard program verifier, respectively.

Syntactic condition. We first provide syntactic versions of mono and framing that are fast and
easy to check, to quickly accept programs that do not use features that could lead to non-preserving
inlining. A program is syntactic mono (resp. framing) if the program does not contain any syntactic
features that could be the reason for violating mono (resp. framing). Such violating features include
operations that inspect the resources held in a state (e.g., the perm feature in VIPER). Violating
features also include any feature that could trigger proof search strategies for imprecise assertions.
In GRASSHOPPER, VERIFAST, and VIPER, this includes, for instance, imprecise assertions in pre-
conditions of library methods. The syntactic check overapproximates the imprecise assertions by

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAL1, Article 102. Publication date: April 2023.

Verification-Preserving Inlining in Automatic Separation Logic Verifiers 102:19

; exist := exist A perm(x.f) < };

assume perm(x.f) 3
if (exist) { assume perm(x.f) Zi }

assert perm(x.f)

IV IA
INTEYNIIS

Fig. 7. The statement s (sequential composition of the two statements on the left) is mono and framing, but
rejected by the syntactic rules since it uses resource introspection. Our structural rules admit this statement.
The proof obligation used to check these rules, guardExecs(s, exist), is shown on the right.

checking for components such as existentially-quantified parameters that could be the cause of
imprecision. In App. E of the TR, we provide details about violating features for the three verifiers.
These syntactic checks are useful to quickly identify programs for which inlining is clearly
verification-preserving, but are too coarse to validate non-trivial applications of advanced features
(including the examples in Sect. 2). For example, the statement on the left of Fig. 7 is mono and
framing, but is rejected by the syntactic check since it uses VIPER’s perm feature, which can be used
to encode proof search strategies that might lead to non-preserving inlining, as shown in Sect. 2.

Structural condition. To validate more complex programs, we also provide structural versions
of mono and framing that are more precise than the syntactic versions and that can nevertheless
be checked by a standard program verifier. For simplicity, the rest of this section focuses on the
structural version of mono, but the treatment of framing is analogous (see App. F of the TR).

The structural mono property strengthens the mono property (Def. 4.2) such that it can be
automatically checked via a program verifier. Below, we show its definition for an annotation A, a
set of states T, and a statement s. In this definition, the determinization function det (which maps three
states and a statement to a set of states) corresponds to a non-empty subset of sem 4 (¢1, s), obtained
via the process of determinization (explained later in this section). In the case of a deterministic
statement s, det(@1, @2, @5, 5) = sema (91,), since semg (@1, s) contains at most one element, and
thus it is the only subset of itself that might be non-empty.

Definition 5.1. Structural mono
structMonoz (T, s) = Vo1, 02 € .01 < @3 < T A ver z(¢1,5) =
ver (a2, s) A (safety monotonicity)

Yo, € sema(¢s,s). (Yo € det(p1, 02, 05,5). 07 <X @5) A

@ C det(pr, 0, 9Ly 5) sema(y,s) (structural output mono)

The structure of the structural mono definition and the mono definition (Def. 4.2) are identical.
The definitions differ only in the conjunct for output monotonicity. In the original mono definition,
this conjunct is given by sem#(¢1,s) < sema(¢2, s), which, after expanding < (see definition of <
in Sect. 4.1), is equivalent to Vo, € sem# (2, s). Ap; € semz(¢1,5). ¢; < ¢,. This formula contains
an existential quantifier over states that is nested within a universal quantifier, thus making it
hard to automatically reason about.!’ The structural mono definition circumvents this forall-exists
alternation issue by strengthening the existential quantifier over ¢; to a universal quantifier over a
non-empty range. That is, we replace the existentially-quantified formula J¢; € sem#(¢1,s). @] =
¢, from the original definition of mono by the universally-quantified Vo[€ det(¢1, 92, ¢;,5). 9] < ¢,
(which we call the universal determinization condition) and the additional requirement that the
range det(¢1, @2, ¢,,$) is a non-empty subset of sem gz (¢1,).

It is easy to show that structural mono implies mono, as we have proved in IsABELLE/HOL:

LEMMA 5.2. Structural mono implies mono: structMono (T, s) = mono#(T,s).

HNote that the existential quantifier hidden in ¢, < T in Def. 5.1 is not problematic for automation because it occurs on
the left-hand side of an implication and is, thus, equivalent to a top-level universal quantifier.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAL, Article 102. Publication date: April 2023.

102:20 Thibault Dardinier, Gaurav Parthasarathy, and Peter Miiller

PRroOF SKETCH. By the similar structure between the definitions of mono (Def. 4.2) and structural
mono (Def. 5.1), we simply need to show that (a) Vo, € sema(¢z,s). (Vo; € det(¢1, @2, ¢5,5). @] =
®;) AN @ C det(¢1, 92, 0,5,8) C semg(¢1,s) implies (b) sema(¢1,5) < semgz (s,). (b) is equivalent,
by definition (Sect. 4.1), to Yo, € semz (¢, 5). 3p; € sema(¢1,s).] = p;. We assume (a), and
want to show (b). Let ¢, € sem g (g2, s). From (a), we know that det(¢1, @2, @5, s) is not empty. Thus,
let] be any state from det(¢1, @2, @5, s). Then, from (a), ¢; also belongs to sem # (¢1, s), and] < ¢,
holds, which proves (b), and thus concludes the proof. O

The structural framing property is obtained analogously by modifying the framing definition
(Def. 4.3). It is easy to show that structural framing implies framing (see App. F of the TR). The
structural condition StructC},(T,s) is defined identically to the semantic condition SC} (T, s)
(Def. 4.4), except that the mono and framing properties are replaced by the corresponding structural
properties. We proved in IsABELLE/HOL that the structural condition implies the semantic condition:

THEOREM 5.3. StructC} (T,s) = SC} (T, s)

PrOOF sKETCH. Since StructC},(T,s) is defined identically to SC},(T,s) except that structural
mono (resp. stuctural framing) is used instead of mono (resp. framing), this statement follows
immediately by induction on StructC}, (T, s) using that structural mono implies mono (Lemma 5.2)
and structural framing implies framing (Lemma F.2 in App. F of the TR). O

Automating the structural condition. In the following, we explain how we check the structural
condition automatically, which boils down to automatically checking structural mono and struc-
tural framing. Our approach is implemented by emitting additional proof obligations in VIPER’s
verification condition generator, which builds on the BoogIk verifier [Leino 2008]. For the sake of
concreteness, we will explain these additional proof obligations in terms of this implementation.
However, they can be generated in any verifier that can (a) express an ordering on states and
(b) non-deterministically choose a state smaller than some other state. Both requirements are
met by the prevalent implementation techniques for automatic SL verifiers: verification condition
generation and symbolic execution. In our implementation, we satisfy both requirements by rely-
ing on the total-heap representation of SL states [Parkinson and Summers 2012] used by VIPER’s
verification condition generator where a state consists of a heap, a permission mask (mapping
resources to the held ownership amounts), and a store of local variables. The heap and the mask
are represented in BooGIE with maps. This representation allows us to satisfy requirement (a) by
universally quantifying over the contents of the maps representing the heaps and the masks of
both states (e.g., to express that one mask contains pointwise less permission than the other), and
requirement (b) by picking fresh maps and then constraining them suitably via assume statements.

Given these two requirements, we can express the proof obligations for structural mono and
framing. Both are hyperproperties because they relate two executions of the statement s. As is
common, we use self-composition [Barthe et al. 2011] to reduce these hyperproperties to trace
properties that can be checked by a standard verifier such as Boogik.

We now explain the proof obligations for the structural mono property for a statement s. Checking
structural framing is analogous as explained in App. F of the TR. We show the simpler case where s is
deterministic. In this case, the determinization function is given by det(¢1, p2, 3, 5) = semz(¢1,$).
At the end of this section, we will then explain how to handle non-deterministic statements.

Our structural condition requires the call-free statements between method calls to be structurally
mono. To check this property, we precede each such statement s with the code shown in Fig. 8, which
generates the necessary proof obligations. Note that this code is included in a non-deterministic

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAL1, Article 102. Publication date: April 2023.

Verification-Preserving Inlining in Automatic Separation Logic Verifiers 102:21

if (*) then
Let @1, @2 be VIPER states s.t. ¢1 < @2 < currentViperState
(exist, currentViperState) «— (T, ¢1)
guardExecs(s, exist)
@] < currentViperState
currentViperState < ¢z
s
assert exist A ¢] < currentViperState

9: assume false
10: end if

AN A

Fig. 8. Proof obligation, expressed via self-composition, to automatically check if a deterministic statement s
is structurally mono. We use pseudocode here, but the check can be expressed directly in VIPER’s verification
condition generator based on BooclE.

branch (line 1), which is killed after the check (line 9). This allows us to include the check in the
encoding of the inlined program without affecting the rest of its verification.

According to Def. 5.1, structural mono is defined relative to an upper bound T, which in the
structural condition is instantiated with the set of states reachable before the statement s in the
inlined program. These states are implicitly represented by the current verification state of the
VIPER program before statement s; in Fig. 8, we refer to this state as currentViperState; like all our
states, it consists of a heap, a permission mask, and a store.

To prove structural mono for all states ¢1, @2, we choose (in line 2) fresh states non-deterministically
and constrain them as prescribed by Def. 5.1 (where the current verification state represents @3 € T).
VIPER does not have a built-in order on states but, as we explained above, we can express this easily
via quantification over the contents of the heap and the mask.

Structural mono may assume that s verifies successfully in state ¢; (ver #(¢1, s) in Def. 5.1). We
achieve this by setting the current state to ¢; (line 3), execute s (line 4), and record the final state as
¢; (line 5). However, since the successful verification of s in ¢; is an assumption of structural mono,
we need to catch situations where this verification fails. In that case, we would incorrectly report
an error even though structural mono is not violated. We also need to detect if the execution of s is
infeasible because this would make the remaining proof obligations hold vacuously, even though
structural mono is actually violated in this case. We solve both issues by executing a modified
version of s, namely s’ £ guardExecs(s, exist), that avoids infeasible executions by accumulating
assumptions using a fresh boolean variable exist, and by executing statements in s only if exist holds.
s’ avoids failing executions by turning assertions into assumptions. Hence, after the execution of s’,
if exist holds, then ¢; corresponds to an output state of a verifying execution of s in ¢, as required
by Def. 5.1. We illustrate the transformation guardExecs(_, exist) on the right of Fig. 7.

After this first (instrumented) execution of s in the state ¢;, we execute the (non-instrumented)
statement s in the state ¢, (lines 6 to 7). If no error is reported during this execution, we can
guarantee that s is safety monotonic for the bound T. We check whether s is also structural output
monotonic, which corresponds to the second conjunct on the implication’s right-hand side of the
structural mono definition (marked by "structural output mono." in Def. 5.1), as follows. Since
we assume s to be deterministic (and, thus, det(¢1, @2, ¢;,5) = sem#(¢1,5)), Def. 5.1 requires
semz(¢1,s) # @. In other words, it requires the first execution of s to reach a final state, that is, to
be feasible, which we check by asserting that exist holds (line 8). Moreover, the final state of the
second execution of s (¢, in Def. 5.1) must be larger than the final state of the first (¢; in Def. 5.1),
which we assert as well. Note that the universal determinization condition must hold only for

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAL, Article 102. Publication date: April 2023.

102:22 Thibault Dardinier, Gaurav Parthasarathy, and Peter Miiller

@, € semz(¢z,s). This is automatically the case in our proof obligation: if the execution of s on
line 7 is infeasible, then the check on line 8 holds trivially.

In summary, the proof obligation from Fig. 7 reflects directly the definition of structural mono
for deterministic statements s. Even though Def. 5.1 expresses a non-trivial hyperproperty that
compares entire states, the resulting proof obligations can be proved automatically using standard
verification tools. Next, we discuss how to check the property for non-deterministic statements.

Determinization. The determinization function det(¢1, @2, @5, s) used in Def. 5.1 yields the subset
of final states sem.# (1, s) of executions that make, wherever possible, the same non-deterministic
choices as the execution that starts in ¢, and ends in ¢;. Here, the states correspond to the states
from Def. 5.1; in particular, det(¢1, ¢z, @5, s) is meaningful when ¢; < ¢;. The corresponding proof
obligation when s is deterministic (and thus det(¢p1, 2, ¢;,s) = semz (¢, s)) is shown in Fig. 8.

However, for non-deterministic statements s, using the entire set of final states sem # (¢1, s) would
lead to an overly strong definition of structural mono: Def. 5.1 would compare final states ¢; and ¢,
obtained by making different non-deterministic choices and, for that reason, fail to satisfy ¢; < ¢;.
To avoid this problem, determinization aligns the two executions of s, to obtain a more relevant (and
smaller) subset det(¢1, 2, ¢;,s) of semz(¢1,s) (recall that the universal determinization condition
is Vi € det(¢1, 92, ¢5,5). 9] < ¢,). Instead of comparing every pair of executions (Ej, Ez) of
statement s starting in ¢, and ¢, and ending in ¢] and ¢, respectively, determinization compares
only those executions that resolve non-determinism similarly. To achieve this, we record all non-
deterministic choices (such as the initial values of variables and newly-owned heap locations, or
the existential fractional ownerships that have been chosen) made during the execution E; (line 4
in Fig. 8), and then ignore the pair (Ey, E,) if E, (line 7) resolves non-determinism in a different way,
provided that there is (at least) one pair with E, that is not ignored. The latter proviso ensures that
the set of executions E; that are compared with E, is non-empty, i.e., that det(¢1, @2, @5, s) # @, as
required by the structural mono property (Def. 5.1). See App. G of the TR for more details.

6 EVALUATION

In this section, we evaluate four important aspects of our technique. We demonstrate that (1) features
that may cause inlining to be non-preserving are widely used, (2) non-preserving inlining actually
occurs in practice, (3) our structural condition is sufficiently precise, that is, it captures most
examples that violate the syntactic condition but can be inlined in a verification-preserving manner,
and (4) our implementation of verification-preserving inlining in VIPER effectively detects bugs.

Our evaluation considers the test suites from VERIFAST (1002 files), GRASSHOPPER (314 files),
NagInt (232 files), and RSL-VIPER (14 files); the latter two encode verification problems into VIPER.
All four verifiers are interesting subjects for our evaluation because they use automation techniques
and generate proof obligations for features that potentially lead to non-preserving inlining and
that violate our syntactic condition. Examples from other tools, such as Prusti [Astrauskas et al.
2019], can always be validated by our syntactic condition, which demonstrates the usefulness of
this check, but makes those tools less relevant for our evaluation.

We have implemented verification-preserving inlining for loops and method calls in VIPER,
taking partial annotations into account. Our implementation automatically checks the structural
condition using the technique described in Sect. 5 (and omits it when the syntactic condition
holds). Both inlining and checking the structural condition are performed by extending VIPER’s
verification condition generator, which translates VIPER programs to BooGIE [Leino 2008]. The
tool and examples are part of our publicly available artifact [Dardinier et al. 2023].

In the following, we refer to files (resp. features) that violate the syntactic condition as non-trivial
files (resp. non-trivial features).

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAL1, Article 102. Publication date: April 2023.

Verification-Preserving Inlining in Automatic Separation Logic Verifiers 102:23

Table 1. Results of our syntactic checks and subsequent manual analysis for files from the test suites of
RSL-ViPeR (R), NAGINI (N), GRASSHoPPER (G), and VERIFAST (VF). The results show that 67% of the tests
include features that our syntactic checks do not capture, that inlining may be non-preserving for the methods
in 31% of the manually analyzed test cases, and that our structural condition is sufficiently precise to validate
94% of the test cases that are always-preserving.

R N G VF Total
All files 14 232 314 1002 1562
t Satisfy syntactic condition - - 203 306 509

Violate syntactic condition 14 232 111 696 1053
| Manually analyzed 12 20 20 20 72
t Not always-preserving 8 4 2 8 22
Always-preserving 4 16 18 12 50
t Validated by semantic condition 4 15 18 12 49
Validated by structural condition 2 15 18 12 47

Lines of code (mean / median) 85/104 | 73/47.5 | 124/57 | 160/ 67 | 139/ 61

6.1 The Syntactic Condition is Often Violated

The first three rows in Tab. 1 show that non-trivial features appear often in the analyzed test suites:
Out of 1562 files in total, 1053 (67%) violate the syntactic condition (the numbers were obtained via
automatic detection of non-trivial patterns). This shows not only that most files contain features
that might make inlining non-preserving, but also that our structural condition, which is more
fine-grained than the syntactic one, is indeed necessary to determine whether inlining is verification-
preserving. Proof rule selection strategies that depend on the owned resources are applied in 5
RSL-ViIpER files (out of 14, 36%) and 64 NaGInT files (out of 232, 28%). Moreover, we found 111
non-trivial files in GRASSHOPPER (out of 314, 35%) and 696 in VERIFAST (out of 1002, 69%), mostly
because of imprecise assertions that appear in predicate bodies, specifications, and ghost code. Apart
from these two scenarios that we have discussed throughout the paper, there is a third scenario that
violates the syntactic condition. 11 GRASSHOPPER files (out of 314, 4%) and all NAGINT files contain
assertions that specify exact bounds on the resources owned. GRASSHOPPER’s assert R statement
succeeds iff the method owns exactly the resources specified by R, reflecting GRASSHOPPER’s
underlying classical SL. NAGINT asserts at the end of each method that there are no remaining
obligation resources to release a lock, which would get leaked when the method terminates. Since
inlining affects the resources owned, these instances can also lead to non-preserving inlining.

6.2 Non-Preserving Inlining Occurs in Practice

Examples that violate our syntactic condition do not necessarily make inlining non-preserving. To
assess whether inlining is actually non-preserving for non-trivial examples, we further analyzed
non-trivial files from the four verifiers. Since most methods in the test suites have no (or very
few) clients that invoke them, it would be insufficient to check whether non-preserving inlining
occurs only for the existing clients as the initial statement, or for a fixed selection of inlining
bounds. Instead, we (manually) analyze the methods for any possible client code (with minor
restrictions) and any inlining bound. In particular, we classify a file as always-preserving if inlining
every method in every caller context that satisfies the syntactic condition (that is, does not itself
make inlining non-preserving)'? is verification-preserving for every inlining bound. In RSL-VIPER
and NAGINI, we analyzed the methods in the corresponding VIPER encoding. For 114 files in NAGINT,

12For NAGINT, we used further restrictions on the clients to avoid that systematic leak checks prevent all examples from
being always-preserving, which would not faithfully reflect typical clients.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAL, Article 102. Publication date: April 2023.

102:24 Thibault Dardinier, Gaurav Parthasarathy, and Peter Miiller

Table 2. Non-trivial examples from the test suites of NaGini (N), RSL-ViPeR (R), VERIFAST (VF), GRASSHOPPER
(G). VErIFAST and GRASSHoOPPER examples were translated manually to VIPER. We show the lines of code and
lines of annotations needed for successful modular verification. The next three columns indicate whether
inlining is verification-preserving (Inl.P.), the semantic condition holds (SC), and the structural condition
holds (Str.C.). The verification time with inlining (T) is the average of 5 runs on a Lenovo T480 with 32 GB,
i7-8550U 1.8 GhZ, Windows 10. The last two columns show the number of seeded errors (#Err.) to be found
with inlining and the number of spurious errors reported when verifying modularly, but without annotations
(#Sp.Err.). If more than one initial statement was considered in which calls were inlined, then the number of
spurious errors is given by the average of spurious errors reported for each of the initial statements.

Name LOC | Ann. | InlP. | SC | Str.C. | T [sec] | #Err. | #Sp.Err.
Ni:iap_bst 122 | 22 S /| 7 19.2 2 103
Nj: parkinson_recell 37 9 4 4 v 11.9 3 5.4
Ns3: watchdog 52 9 v v v 10.8 1 3
Njy: loops_and_release 20 n/a X X X 9.0 n/a n/a
R;y: rust_arc [Doko and Vafeiadis 2017] 26 6 v v v 3.4 7 1.6
Ry: lock_no_spin 17 2 v v X 42 0 1
R3: msg_pass_split_1 10 3 v v v 2.7 1 5
R4: msg_pass_split_2 10 n/a X X X 5.8 n/a n/a
VF1: account 43 8 v v v 2.2 2 3.7
VF3: Icp [Jacobs et al. 2014] 54 n/a X X X 7.3 n/a n/a
VF3: iterator 49 8 v v v 1.6 2 4.5
VF4: stack 50 6 v v v 1.9 3 2.5
Gq: bstree 100 n/a X X X 13.5 n/a n/a
Go: nodes 54 29 v v v 14 3 7.8

we could automatically deduce that they were always-preserving using extended verifier-specific
syntactic checks. For the remaining files, manual inspection was required. For all verifiers except
GRASSHOPPER, some of these files were too complex for manual inspection, so we automatically
discarded all those files with too many complicated features. This still left us with a large and diverse
set of examples (12 for RSL-VIPER, 79 for NAGINT, 111 for GRASSHOPPER, 271 for VERIFAST). From
these examples, we picked 20 examples randomly for each verifier (except RSL-VIPER, where we
took all). The results of this manual analysis are presented in Tab. 1. We took existing annotations
into account. Not doing so would have resulted in a different classification for only 2 examples in
VERIFAsT, which would have been classified as always-preserving instead.

Overall, out of the 72 non-trivial files that we analyzed manually, 22 files (31%) are not always-
preserving. This shows that inlining is non-preserving in a non-negligible number of cases, and
that inlining is verification-preserving in the majority of cases even when the syntactic condition
is violated; thus, our more-precise structural condition is needed to validate those (see Sect. 6.3).

Our manual inspection revealed that in VERIFAST, non-preserving inlining is often due to
imprecise assertions. In RSL-VIPER, the non-preserving pattern from Fig. 2 occurs in 5 examples.
In GRASSHOPPER and NAGINI, the main source of non-preserving inlining are assertions on exact
bounds of resources, which are non-preserving in calling contexts that provide more resources.

6.3 Our Conditions are Effective and Precise

Our semantic and structural conditions are sufficient for inlining to be verification-preserving, but
not necessary. To evaluate the precision of the conditions, we further examined examples for which
inlining is always-preserving. For the 114 automatically handled examples in NAGINT, we could also
automatically deduce that both the semantic and structural conditions hold. For the 72 manually
handled examples, we also evaluated the conditions manually and will discuss the results (shown
in Tab. 1) next. We also assessed the usefulness of the bounded relaxation of our condition.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAL1, Article 102. Publication date: April 2023.

Verification-Preserving Inlining in Automatic Separation Logic Verifiers 102:25

Our semantic condition is precise. As shown by the results of our manual analysis (Tab. 1), our
semantic condition captures almost all (49 out of 50, 98%) non-trivial files classified as always-
preserving. Besides the always-preserving file (in NAGINT) not captured by our condition, there are
methods in the non-preserving files for which inlining is non-preserving in some caller contexts,
but verification-preserving in others. Our manual inspection revealed some verification-preserving
caller contexts that our semantic condition cannot validate. We found such patterns in RSL-VIPER
(see Fig. 2), VERIFAST, and NAGINT, but not in GRASSHOPPER. Dealing with these patterns requires a
non-compositional approach taking the entire program into account, which is practically infeasible.

Our structural condition is effective. Our structural condition is stronger than the semantic
condition. Tab. 1 shows that this over-approximation is very precise in practice: the structural
condition validates 96% of the always-preserving files that satisfy the semantic condition.

The bounded relaxation is required. We argued in Sect. 3.4 that the bounded relaxation of our
condition is needed to validate common patterns. Our manual inspection confirmed this claim.
For example, NAGINT uses two patterns (occurring in 62 and all 232 test cases, resp.) that can be
validated only with the bounded conditions. In GRASSHOPPER and VERIFAST, imprecise assertions
(occurring in 107 and all 697 test cases, resp.) are often unambiguous in the context they are inlined
in, and thus satisfy our structural condition only because of the bounded relaxation.

6.4 Verification-preserving Inlining Effectively Detects Bugs

The structural condition can be checked automatically. The previous subsection showed that our
structural condition is sufficiently precise. To evaluate whether it can be checked automatically,
we manually selected, out of the 1053 non-trivial files, a diverse set of examples (shown in Tab. 2)
that reflect the non-trivial patterns occurring in the different verifier test suites and that could be
translated to VIPER. Our tool correctly reports whether the structural condition holds in all cases
irrespective of whether existing annotations are taken into account.

Inlining detects errors effectively. To evaluate how effective inlining is in finding true errors without
annotations, we consider all examples in Tab. 2 for which inlining is verification-preserving, and
some examples taken from the VIPER test suite, most of which satisfy the syntactic condition (Tab. 3
in App. H of the TR). We seeded errors by making simple changes in the implementations or writing
clients that use methods incorrectly. For several examples, we considered more than one initial
statement in which calls were inlined and loops were unrolled. Our tool was able to report every
true error for some sufficiently large inlining bound (bounds between 1 and 4 were sufficient for all
examples except for Ny and G, in Tab. 2, where bounds 10 and 11 were required since both examples
contain a loop that iterates 10 times). Our tool never reported a spurious error, which was expected
since our structural condition is sufficient to ensure that inlining is verification-preserving.

Inlining reduces annotation overhead. Verifying the same examples modularly without providing
any annotation results in at least one spurious error each, and 3 on average. To assess the amount
of annotations saved by using inlining instead of modular verification, we considered annotations
for all examples to successfully verify without inlining (that is, to show they are memory safe and
satisfy all provided assertions). This required 256 lines of annotation in the programs for 1152 lines
of code, which inlining does not require. This result shows that inlining is useful to find true errors
with low annotation overhead and to gain confidence that an implementation is correct.

6.5 Threats to Validity

We identified the following threats to the validity of our evaluation.
Dataset. Our examples, which we took from the test suites of VERIFAST, GRASSHOPPER, NAGINI,
and RSL-VIPER, might not be representative of realistic code. We believe this threat to be minor

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAL, Article 102. Publication date: April 2023.

102:26 Thibault Dardinier, Gaurav Parthasarathy, and Peter Miiller

since (1) these test suites contain various practically-relevant verification problems and (2) contain
non-trivial specifications and exercise features that show up in real-world programs.

As we discussed in Sect. 6.2, we discarded some files automatically before choosing files randomly
for the manual analysis presented in Sect. 6.2 and 6.3. We are convinced that discarding these files
does not compromise the validity of our manual analysis (and accompanying automatic analysis for
Nagcini) for the following reasons. In VERIFAST, we discarded files that were too large for manual
inspection. Features that violate the syntactic condition in VERIFAST often appear within small
recurring patterns that also show up in the considered smaller files. We are thus confident that our
results for “always-preserving” files would be similar for the discarded files. Since the discarded
files are larger, we likely would get more files that exhibit non-preserving inlining, which would
still support our conclusion that non-preserving inlining occurs. For NAGINT and RSL-VIPER, we
discarded files that contain features that were too complex to analyze manually. However, in both
cases, we still consider the vast majority of the test cases (83% and 86%, respectively).

Manual analysis. We may have made mistakes in our manual analysis presented in Sect. 6.2
and 6.3. We mitigated this risk as follows. When a file is not always-preserving, we wrote a simple
client satisfying the syntactic condition that invokes a method in the file to confirm this observation.
That is, we (1) wrote an annotation for which the program (consisting of the client as the initial
statement) verifies modularly and (2) identified an inlining bound for which the inlined program
does not verify. To check (2), we used our inlining tool for VipER-based verifiers; for GRASSHOPPER
and VERIFAST, we inlined calls and unrolled loops manually, and then used the corresponding
verifier. When inlining is always-preserving for a file, we sketched informal proofs for every method
in the file. We did so by considering each statement of a method that does not satisfy the syntactic
condition, and reasoned why (given the rest of the method) it cannot lead to non-preserving inlining.
We sketched similar proofs in cases where the semantic condition and structural condition hold.

Error seeding. We seeded the errors in Tab. 2 and Tab. 3 in App. H of the TR mostly ourselves.
We tried to mitigate a potential bias by seeding different kinds of errors (e.g., asserting incorrect
properties in clients, using libraries incorrectly, erroneously adjusting library implementations).

7 RELATED WORK

Corral [Lal et al. 2012] detects bugs in C programs by translating them to Boogie [Leino 2008].
The Boogik verifier is used to check correctness of the inlined BooGIE program. Inlining is trivially
verification-preserving for CorrRAL. Additionally, CORRAL applies various techniques to improve
efficiency such as approximating method calls with inferred method call summaries without inlining
them. Lourenco et al. [2019] consider bounded verification using inlining in the context of a standard
verification language without any resources. They directly connect correctness of the original
program (instead of verification w.r.t. a verifier semantics) to verification of the inlined program,
which is not possible in our setting due to proof search algorithms.

One of our motivations as mentioned in Sect. 1 is to use bounded verification as a stepping stone
for modular verification. This is also the case for Beckert et al. [2020], who define a translation from
a Java program with annotations expressed in the Java Modeling Language [Leavens et al. 2006] to a
Java program that is accepted by the JBMC bounded model checker [Cordeiro et al. 2018]. Bounded
model checkers (BMC) such as JBMC and CBMC [Clarke et al. 2004] perform bounded verification
(via inlining) and detect errors effectively but do not support annotations such as method contracts
and frame conditions, and generally support less expressive assertions than deductive verifiers.

Instead of using an off-the-shelf BMC, we inline the program and then use already-existing
automatic deductive SL verifiers, which have a mature automation infrastructure for SL assertions.
This allows us to directly support inlining partial annotations or calls to library methods without

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAL1, Article 102. Publication date: April 2023.

Verification-Preserving Inlining in Automatic Separation Logic Verifiers 102:27

additional work on SL assertion support in BMC. Moreover, performing both kinds of verification
within the same tool ensures that no verification errors are caused by switching from one tool to
the other, for instance, due to small differences in the verifier semantics. Nevertheless, it would be
interesting to explore a BMC technique that supports the handling of SL assertion logics such as
those from GRASSHOPPER, VIPER and VERIFAST (potentially building on SL runtime checking [Agten
et al. 2015; Nguyen et al. 2008] or SL model checking [Brotherston et al. 2016]).

While safety monotonicity and the framing property have been studied in the context of
SL [Calcagno et al. 2007; Yang and O’Hearn 2002], the relaxed conditions we use (where the
states these conditions quantify over are bounded using the inlined program’s execution) have, to
the best of our knowledge, not been explored before. As shown in Sect. 6, these relaxations are
essential to capture common idioms. Moreover, our semantic condition imposes monotonicity and
framing constraints on different parts of the program (based on the relationship between modular
and inlined verification), which is crucial to capture common patterns that satisfy these properties
but contain statements that do not, as illustrated in Sect. 3. Finally, we propose a novel output
monotonicity property, which, to the best of our knowledge, has not been used in the context of SL.

Several automatic SL verifiers use incomplete heuristics in their proof search strategies that may
lead to non-preserving inlining, such as CAPER [Dinsdale-Young et al. 2017], GRASSHOPPER [Piskac
et al. 2014], Nacint [Eilers and Miiller 2018], REFINEDC [Sammler et al. 2021], RSL-VIPER [Summers
and Miiller 2018], STEEL [Fromherz et al. 2021], VERCoRrs [Blom et al. 2017], VERIFAST [Jacobs et al.
2011], and VipeR [Miiller et al. 2016]. REFINEDC uses incomplete rules and STEEL uses incomplete
heuristics to instantiate existentially-quantified variables; both may lead to non-preserving inlining
(Fig. 13 and 14 in App. I of the TR). CAPER uses backtracking when resolving non-deterministic
choices to make the proof search more complete. However, for the region creation proof rule, which
can (but need not) be applied at various points, CAPER cannot explore all options. Instead, it uses
incomplete heuristics that can lead to non-preserving inlining (Fig. 12 in App. I of the TR). While
our framework can be applied to GRASSHOPPER, VERIFAST, and verifiers based on VIPER, it cannot
be applied to CAPER, because backtracking does not fit into our formal model.

8 CONCLUSION

We demonstrated that inlining may introduce false positives when using automatic SL verifiers.
Their automation techniques are sensitive to changes in ownership, which occur inevitably during
inlining. We identified a novel compositional semantic condition and proved that it is sufficient to
ensure verification-preserving inlining. Since this condition is difficult to check, we developed two
approximations that can be checked syntactically and with a standard program verifier, respectively.
Our evaluation shows that these conditions are necessary and capture most use cases.

Our work paves the way to bounded verification within automatic SL verifiers without the risk
of false positives. We believe that the foundations presented in this paper can also be used for other
applications, such as the caching of verification results in automatic SL verifiers. Existing caching
approaches [Leino and Wiistholz 2015] do not re-verify code after a call if the postcondition of the
callee is strengthened. Such techniques may be unsound when applied to automatic SL verifiers if
the statement after the call is not safety monotonic. One direction for future work is to devise a
sound caching approach for automatic SL verifiers using our techniques.

ACKNOWLEDGMENTS

We thank the following people for their help: Vytautas Astrauskas and Marco Eilers (NAGINT), Felix
Wolf (CapEr), Michael Sammler (REFINEDC), Denis Merigoux (STEEL), Malte Schwerhoff (VERIFAST),
and Christoph Matheja (giving feedback on previous drafts). This work was partially funded by the
Swiss National Science Foundation (SNSF) under Grant No. 197065.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAL, Article 102. Publication date: April 2023.

102:28 Thibault Dardinier, Gaurav Parthasarathy, and Peter Miiller

DATA AVAILABILITY STATEMENT

Our publicly-available artifact [Dardinier et al. 2023] contains:

(1) IsaBELLE/HOL proofs of the technical results from Sect. 4 and 5.

(2) An analysis of the test suites of GRASSHOPPER, NAGINI, RSL-VIPER, and VERIFAST, corre-
sponding to the results shown in Tab. 1.

(3) The inlining tool for VIPER, described in Sect. 6, which inlines calls and unrolls loops, while
also checking the structural condition.

(4) A test framework that runs the inlining tool on the examples from Tab. 2 (and Tab. 3 from
the TR [Dardinier et al. 2022b]).

REFERENCES

Pieter Agten, Bart Jacobs, and Frank Piessens. 2015. Sound Modular Verification of C Code Executing in an Unverified
Context. In Principles of Programming Languages (POPL), Sriram K. Rajamani and David Walker (Eds.). https://doi.org/
10.1145/2676726.2676972

Vytautas Astrauskas, Peter Miiller, Federico Poli, and Alexander J. Summers. 2019. Leveraging Rust Types for Modular
Specification and Verification. Proc. ACM Program. Lang. 3, OOPSLA, Article 147, 30 pages. https://doi.org/10.1145/3360573

Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. 2011. Secure Information Flow by Self-Composition. Mathematical
Structures in Computer Science (MSCS) 21, 6 (2011), 1207-1252. https://doi.org/10.1017/50960129511000193

Bernhard Beckert, Michael Kirsten, Jonas Klamroth, and Mattias Ulbrich. 2020. Modular Verification of JML Contracts Using
Bounded Model Checking. In International Symposium on Leveraging Applications of Formal Methods (ISoLA), Tiziana
Margaria and Bernhard Steffen (Eds.), Vol. 12476. 60-80. https://doi.org/10.1007/978-3-030-61362-4_4

Stefan Blom, Saeed Darabi, Marieke Huisman, and Wytse Oortwijn. 2017. The VerCors Tool Set: Verification of Parallel and
Concurrent Software. In Integrated Formal Methods, Nadia Polikarpova and Steve Schneider (Eds.). Springer International
Publishing, Cham, 102-110. https://doi.org/10.1007/978-3-319-66845-1_7

John Boyland. 2003. Checking Interference with Fractional Permissions. In Static Analysis (SAS), Radhia Cousot (Ed.). 55-72.
https://doi.org/10.1007/3-540-44898-5_4

James Brotherston, Nikos Gorogiannis, Max I. Kanovich, and Reuben Rowe. 2016. Model Checking for Symbolic-Heap
Separation Logic with Inductive Predicates. In Principles of Programming Languages, POPL, Rastislav Bodik and Rupak
Majumdar (Eds.). 84-96. https://doi.org/10.1145/2837614.2837621

Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. 2007. Local Action and Abstract Separation Logic. In Logic in
Computer Science (LICS). 366-375. https://doi.org/10.1109/LICS.2007.30

Edmund Clarke, Daniel Kroening, and Flavio Lerda. 2004. A Tool for Checking ANSI-C Programs. In Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), Kurt Jensen and Andreas Podelski (Eds.). 168-176. https:
//doi.org/10.1007/978-3-540-24730-2_15

Michael R. Clarkson and Fred B. Schneider. 2008. Hyperproperties. In 2008 21st IEEE Computer Security Foundations
Symposium. 51-65. https://doi.org/10.1109/CSF.2008.7

Lucas Cordeiro, Pascal Kesseli, Daniel Kroening, Peter Schrammel, and Marek Trtik. 2018. JBMC: A Bounded Model Checking
Tool for Verifying Java Bytecode. In Computer Aided Verification (CAV), Hana Chockler and Georg Weissenbacher (Eds.).
https://doi.org/10.1007/978-3-319-96145-3_10

Thibault Dardinier, Peter Miiller, and Alexander J. Summers. 2022a. Fractional Resources in Unbounded Separation Logic.
Proc. ACM Program. Lang. 6, OOPSLA2, Article 163 (2022), 27 pages. https://doi.org/10.1145/3563326

Thibault Dardinier, Gaurav Parthasarathy, and Peter Miiller. 2022b. Verification-Preserving Inlining in Automatic Separation
Logic Verifiers (extended version). https://doi.org/10.48550/ARXIV.2208.10456

Thibault Dardinier, Gaurav Parthasarathy, and Peter Miller. 2023. Verification-Preserving Inlining in Automatic Separation
Logic Verifiers — Artifact. https://doi.org/10.5281/zenodo.7711788

Thibault Dardinier, Gaurav Parthasarathy, Noé Weeks, Peter Miiller, and Alexander J. Summers. 2022c. Sound Automation
of Magic Wands. In Computer Aided Verification, Sharon Shoham and Yakir Vizel (Eds.). Springer International Publishing,
Cham, 130-151. https://doi.org/10.1007/978-3-031-13188-2_7

Thomas Dinsdale-Young, Pedro da Rocha Pinto, Kristoffer Just Andersen, and Lars Birkedal. 2017. Caper - Automatic
Verification for Fine-Grained Concurrency. In European Symposium on Programming (ESOP), Hongseok Yang (Ed.).
https://doi.org/10.1007/978-3-662-54434-1_16

Robert Dockins, Aquinas Hobor, and Andrew W. Appel. 2009. A Fresh Look at Separation Algebras and Share Accounting.
In Asian Symposium on Programming Languages and Systems (APLAS), Zhenjiang Hu (Ed.). 161-177. https://doi.org/10.
1007/978-3-642-10672-9_13

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAL1, Article 102. Publication date: April 2023.

https://doi.org/10.1145/2676726.2676972
https://doi.org/10.1145/2676726.2676972
https://doi.org/10.1145/3360573
https://doi.org/10.1017/S0960129511000193
https://doi.org/10.1007/978-3-030-61362-4_4
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1145/2837614.2837621
https://doi.org/10.1109/LICS.2007.30
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1109/CSF.2008.7
https://doi.org/10.1007/978-3-319-96145-3_10
https://doi.org/10.1145/3563326
https://doi.org/10.48550/ARXIV.2208.10456
https://doi.org/10.5281/zenodo.7711788
https://doi.org/10.1007/978-3-031-13188-2_7
https://doi.org/10.1007/978-3-662-54434-1_16
https://doi.org/10.1007/978-3-642-10672-9_13
https://doi.org/10.1007/978-3-642-10672-9_13

Verification-Preserving Inlining in Automatic Separation Logic Verifiers 102:29

Marko Doko and Viktor Vafeiadis. 2017. Tackling Real-Life Relaxed Concurrency with FSL++. In European Symposium on
Programming (ESOP), Hongseok Yang (Ed.). 448-475. https://doi.org/10.1007/978-3-662-54434-1_17

Marco Eilers and Peter Miiller. 2018. Nagini: A Static Verifier for Python. In Computer Aided Verification (CAV), Hana
Chockler and Georg Weissenbacher (Eds.). 596-603. https://doi.org/10.1007/978-3-319-96145-3_33

Aymeric Fromherz, Aseem Rastogi, Nikhil Swamy, Sydney Gibson, Guido Martinez, Denis Merigoux, and Tahina Ramananan-
dro. 2021. Steel: Proof-Oriented Programming in a Dependently Typed Concurrent Separation Logic. Proc. ACM Program.
Lang. 5, ICFP (2021), 1-30. https://doi.org/10.1145/3473590

Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank Piessens. 2011. VeriFast: A Powerful,
Sound, Predictable, Fast Verifier for C and Java. In NASA Formal Methods (NFM). 41-55. https://doi.org/10.1007/978-3-
642-20398-5_4

Bart Jacobs, Jan Smans, and Frank Piessens. 2014. Solving the VerifyThis 2012 Challenges with VeriFast. International
Journal on Software Tools for Technology Transfer (STTT) 17 (03 2014). https://doi.org/10.1007/s10009-014-0310-9

Ralf Jung, Robbert Krebbers, Jacques Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the Ground
up: A Modular Foundation for Higher-Order Concurrent Separation Logic. Journal of Functional Programming (JFP)
(2018). https://doi.org/10.1017/S0956796818000151

Akash Lal and Shaz Qadeer. 2014. Powering the Static Driver Verifier Using Corral. In International Symposium on Foundations
of Software Engineering (FSE). 202-212. https://doi.org/10.1145/2635868.2635894

Akash Lal, Shaz Qadeer, and Shuvendu K. Lahiri. 2012. A Solver for Reachability Modulo Theories. In Computer Aided
Verification (CAV), P. Madhusudan and Sanjit A. Seshia (Eds.), Vol. 7358. 427-443. https://doi.org/10.1007/978-3-642-
31424-7_32

Gary T. Leavens, Albert L. Baker, and Clyde Ruby. 2006. Preliminary Design of JML: A Behavioral Interface Specification
Language for Java. SIGSOFT Software Engineering Notes 31, 3 (may 2006), 1-38. https://doi.org/10.1145/1127878.1127884

K. Rustan M. Leino. 2008. This is Boogie 2. (2008). https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-
2/

K. Rustan M. Leino and Valentin Wiistholz. 2015. Fine-Grained Caching of Verification Results. In Computer Aided Verification
(CAV), Daniel Kroening and Corina S. Pasareanu (Eds.), Vol. 9206. Springer, 380-397. https://doi.org/10.1007/978-3-319-
21690-4_22

Claudio Belo Lourenco, Maria Jodo Frade, and Jorge Sousa Pinto. 2019. A Generalized Program Verification Workflow Based
on Loop Elimination and SA Form. In International Conference on Formal Methods in Software Engineering (FormaliSE).
75-84. https://doi.org/10.1109/FormaliSE.2019.00017

Peter Milller, Malte Schwerhoff, and Alexander J. Summers. 2016. Viper: A Verification Infrastructure for Permission-Based
Reasoning. In VMCAI, B. Jobstmann and K. R. M. Leino (Eds.), Vol. 9583. Springer-Verlag, 41-62. https://doi.org/10.1007/
978-3-662-49122-5_2

Huu Hai Nguyen, Viktor Kuncak, and Wei-Ngan Chin. 2008. Runtime Checking for Separation Logic. In Verification,
Model Checking, and Abstract Interpretation (VMCAI), Francesco Logozzo, Doron A. Peled, and Lenore D. Zuck (Eds.).
https://doi.org/10.1007/978-3-540-78163-9_19

Matthew J. Parkinson and Alexander J. Summers. 2012. The Relationship Between Separation Logic and Implicit Dynamic
Frames. Logical Methods in Computer Science 8, 3:01 (2012), 1-54. https://doi.org/10.2168/LMCS-8(3:1)2012

Ruzica Piskac, Thomas Wies, and Damien Zufferey. 2014. GRASShopper. In Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), Erika Abraham and Klaus Havelund (Eds.). 124-139. https://doi.org/10.1007/978-3-642-
54862-8_9

John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. Logic in Computer Science (LICS),
55-74. https://doi.org/10.1109/LICS.2002.1029817

Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memarian, Derek Dreyer, and Deepak Garg. 2021. RefinedC:
Automating the Foundational Verification of C Code with Refined Ownership Types. In Programming Language Design
and Implementation (PLDI). 158-174. https://doi.org/10.1145/3453483.3454036

Malte Schwerhoff and Alexander J. Summers. 2015. Lightweight Support for Magic Wands in an Automatic Verifier. In
European Conference on Object-Oriented Programming (ECOOP) (LIPIcs), John Tang Boyland (Ed.), Vol. 37. 614-638.
https://doi.org/10.4230/LIPIcs. ECOOP.2015.614

Alexander J. Summers and Peter Miiller. 2018. Automating Deductive Verification for Weak-Memory Programs. In Tools
and Algorithms for the Construction and Analysis of Systems (TACAS), D. Beyer and M. Huisman (Eds.). Springer-Verlag,
190-209. https://doi.org/10.1007/978-3-319-89960-2_11

Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon Forest, Karthikeyan Bharga-
van, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean-Karim Zinzindohoue, and Santiago Zanella-Béguelin.
2016. Dependent Types and Multi-Monadic Effects in F*. In Principles of Programming Languages (POPL). 256-270.
https://doi.org/10.1145/2837614.2837655

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAL, Article 102. Publication date: April 2023.

https://doi.org/10.1007/978-3-662-54434-1_17
https://doi.org/10.1007/978-3-319-96145-3_33
https://doi.org/10.1145/3473590
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/s10009-014-0310-9
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2635868.2635894
https://doi.org/10.1007/978-3-642-31424-7_32
https://doi.org/10.1007/978-3-642-31424-7_32
https://doi.org/10.1145/1127878.1127884
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://www.microsoft.com/en-us/research/publication/this-is-boogie-2-2/
https://doi.org/10.1007/978-3-319-21690-4_22
https://doi.org/10.1007/978-3-319-21690-4_22
https://doi.org/10.1109/FormaliSE.2019.00017
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-540-78163-9_19
https://doi.org/10.2168/LMCS-8(3:1)2012
https://doi.org/10.1007/978-3-642-54862-8_9
https://doi.org/10.1007/978-3-642-54862-8_9
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1145/3453483.3454036
https://doi.org/10.4230/LIPIcs.ECOOP.2015.614
https://doi.org/10.1007/978-3-319-89960-2_11
https://doi.org/10.1145/2837614.2837655

102:30 Thibault Dardinier, Gaurav Parthasarathy, and Peter Miiller

Viktor Vafeiadis and Chinmay Narayan. 2013. Relaxed Separation Logic: A Program Logic for C11 Concurrency. In
Object Oriented Programming Systems Languages & Applications (OOPSLA), Antony L. Hosking, Patrick Th. Eugster, and
Cristina V. Lopes (Eds.). ACM, 867-884. https://doi.org/10.1145/2544173.2509532

Hongseok Yang and Peter O’Hearn. 2002. A Semantic Basis for Local Reasoning. In Foundations of Software Science and
Computation Structures (FoSSaCS). 402-416. https://doi.org/10.1007/3-540-45931-6_28

Received 2022-10-28; accepted 2023-02-25

Proc. ACM Program. Lang., Vol. 7, No. OOPSLAL1, Article 102. Publication date: April 2023.

https://doi.org/10.1145/2544173.2509532
https://doi.org/10.1007/3-540-45931-6_28

	Abstract
	1 Introduction
	2 The Problem
	2.1 Automatic Instantiation of Proof Rules
	2.2 Automatic Selection of Proof Rules

	3 Semantic Condition: Key Ideas
	3.1 Framing
	3.2 Safety Monotonicity
	3.3 Output Monotonicity
	3.4 Bounded Relaxations
	3.5 Inlining Partial Annotations

	4 Verification-Preserving Inlining
	4.1 State Model and Verification Language
	4.2 Inlining without Annotations
	4.3 Inlining with Partial Annotations

	5 Automation for Verification-Preserving Inlining
	6 Evaluation
	6.1 The Syntactic Condition is Often Violated
	6.2 Non-Preserving Inlining Occurs in Practice
	6.3 Our Conditions are Effective and Precise
	6.4 Verification-preserving Inlining Effectively Detects Bugs
	6.5 Threats to Validity

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

