
Formal Foundations for Translational Separation Logic
Verifiers
THIBAULT DARDINIER, ETH Zurich, Switzerland

MICHAEL SAMMLER, ETH Zurich, Switzerland

GAURAV PARTHASARATHY, ETH Zurich, Switzerland

ALEXANDER J. SUMMERS, University of British Columbia, Canada

PETER MÜLLER, ETH Zurich, Switzerland

Program verification tools are often implemented as front-end translations of an input program into an

intermediate verification language (IVL) such as Boogie, GIL, Viper, or Why3. The resulting IVL program is

then verified using an existing back-end verifier. A soundness proof for such a translational verifier needs to
relate the input program and verification logic to the semantics of the IVL, which in turn needs to be connected

with the verification logic implemented in the back-end verifiers. Performing such proofs is challenging due to

the large semantic gap between the input and output programs and logics, especially for complex verification

logics such as separation logic.

This paper presents a formal framework for reasoning about translational separation logic verifiers. At its

center is a generic core IVL that captures the essence of different separation logics. We define its operational

semantics and formally connect it to two different back-end verifiers, which use symbolic execution and

verification condition generation, resp. Crucially, this semantics uses angelic non-determinism to enable

the application of different proof search algorithms and heuristics in the back-end verifiers. An axiomatic

semantics for the core IVL simplifies reasoning about the front-end translation by performing essential proof

steps once and for all in the equivalence proof with the operational semantics rather than for each concrete

front-end translation.

We illustrate the usefulness of our formal framework by instantiating our core IVL with elements of Viper

and connecting it to two Viper back-ends as well as a front-end for concurrent separation logic. All our

technical results have been formalized in Isabelle/HOL, including the core IVL and its semantics, the semantics

of two back-ends for a subset of Viper, and all proofs.

CCS Concepts: • Theory of computation→ Logic and verification; Automated reasoning; Separation
logic; Operational semantics; Axiomatic semantics; Program verification.

Additional Key Words and Phrases: deductive verifier, translational verifier, intermediate verification language,

angelic non-determinism, implicit dynamic frames, Viper

ACM Reference Format:
Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J. Summers, and Peter Müller. 2025.

Formal Foundations for Translational Separation Logic Verifiers. Proc. ACM Program. Lang. 9, POPL, Article 20
(January 2025), 31 pages. https://doi.org/10.1145/3704856

Authors’ Contact Information: Thibault Dardinier, ETH Zurich, Department of Computer Science, Zurich, Switzerland,

thibault.dardinier@inf.ethz.ch; Michael Sammler, ETH Zurich, Department of Computer Science, Zurich, Switzerland,

michael.sammler@inf.ethz.ch; Gaurav Parthasarathy, ETH Zurich, Department of Computer Science, Zurich, Switzer-

land, gaurav.parthasarathy@inf.ethz.ch; Alexander J. Summers, University of British Columbia, Vancouver, Canada,

alex.summers@ubc.ca; Peter Müller, ETH Zurich, Department of Computer Science, Zurich, Switzerland, peter.mueller@inf.

ethz.ch.

© 2025 Copyright held by the owner/author(s).

ACM 2475-1421/2025/1-ART20

https://doi.org/10.1145/3704856

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 20. Publication date: January 2025.

This work is licensed under a Creative Commons Attribution 4.0 International License.

HTTPS://ORCID.ORG/0000-0003-2719-4856
HTTPS://ORCID.ORG/0000-0003-4591-743X
HTTPS://ORCID.ORG/0000-0002-1816-9256
HTTPS://ORCID.ORG/0000-0001-5554-9381
HTTPS://ORCID.ORG/0000-0001-7001-2566
https://doi.org/10.1145/3704856
https://orcid.org/0000-0003-2719-4856
https://orcid.org/0000-0003-4591-743X
https://orcid.org/0000-0002-1816-9256
https://orcid.org/0000-0001-5554-9381
https://orcid.org/0000-0001-7001-2566
https://doi.org/10.1145/3704856
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3704856&domain=pdf&date_stamp=2025-01-09

20:2 Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J. Summers, and Peter Müller

1 Introduction
Many program verification tools are organized into a front-end, which encodes an input program

along with its specification and verification logic into an intermediate verification language (IVL),

and a back-end, which computes proof obligations from the IVL program and discharges them,

for instance, using an SMT solver. Examples of such translational verifiers include Civl [Kragl and
Qadeer 2021] and Dafny [Leino 2010] based on the Boogie IVL [Leino 2008], Creusot [Denis et al.

2022] and Frama-C [Kirchner et al. 2015] based on Why3 [Filliâtre and Paskevich 2013], Gillian

for C and JavaScript [Maksimovic et al. 2021a] and Rust [Ayoun et al. 2024] based on GIL [Santos

et al. 2020], as well as Prusti [Astrauskas et al. 2019] and VerCors [Blom et al. 2017] based on

Viper [Müller et al. 2016b].

Developing a program verifier on top of an IVL has major engineering benefits. Most impor-

tantly, back-end verifiers, which often contain complex proof search algorithms, sophisticated

optimizations, and functionality to communicate with solvers and to report errors, can be re-used

across different verifiers, which reduces the effort of developing a program verifier dramatically.

On the other hand, formal reasoning about translational verifiers, in particular, proving their

soundness, is more difficult than for verifiers developed by embedding a program logic in an interac-

tive theorem prover (such as Bedrock [Chlipala 2011], VST [Cao et al. 2018], and RefinedC [Sammler

et al. 2021]). Proving that a translational verifier is sound requires (1) a formal semantics of the

IVL as well as proofs that connect the IVL program (2) to the verification back-end and (3) to

the input program. While these steps have been studied for IVLs based on standard first-order

logic [Parthasarathy et al. 2021; Cohen and Johnson-Freyd 2024; Herms 2013], they pose additional

challenges for IVLs that natively support more-complex widely-used reasoning principles such

as those of separation logic (SL) [Reynolds 2002] (and variations such as implicit dynamic frames

(IDF) [Smans et al. 2012]). We focus on these IVLs, which are commonly-used and especially useful

for building verifiers for heap-manipulating and concurrent programs.

Challenge 1: Defining the semantics of the IVL. Standard programming languages and the

intermediate languages used in compilers come with a notion of execution that can naturally be

captured by an operational semantics. In contrast, IVLs are typically not designed to be executable,

but instead to capture a wide range of verification problems and algorithms for solving them.

To capture different verification problems, IVLs contain features that enable the encoding of a

diverse set of input programs (e.g., by offering generic operations suitable for encoding different

concurrency primitives), specifications (e.g., by offering rich assertion languages), and verification

logics (e.g., by supporting concepts such as framing). An IVL semantics must reflect this generality.

For instance, separation logic-based IVLs provide complex primitives for manipulating separation

logic resources, which can be used to encode separation logic rules into the IVL. As a result, these

primitives can be used to encode a large variety of input program features including procedure

calls, loops, and concurrency.

To capture different verification algorithms, an IVL semantics must not prescribe how to construct

a proof and should instead abstract over different algorithms. Back-ends should have the freedom

to apply various techniques to compute proof obligations (e.g., symbolic execution or verification

condition generation), to resolve trade-offs between completeness and automation (e.g., by over-

approximating proof obligations), and to discharge proof obligations (e.g., instantiating existentially
quantified variables in different ways). For instance, existing algorithms have different performance

characteristics for different classes of verification problems [Eilers et al. 2024]; an IVL semantics

should provide the freedom to choose the best one for the problem at hand. In practice, capturing

different verification algorithms is important for verifiers with multiple back-ends for the same

language (e.g., based on either symbolic execution or verification condition generation). However,

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 20. Publication date: January 2025.

Formal Foundations for Translational Separation Logic Verifiers 20:3

even a single back-end may offer a variety of different algorithms, which are chosen based on

heuristics or configured by the user (e.g., via command-line options). Moreover, back-ends along

with their verification algorithms apply different algorithms over time, as their developers optimize

existing verification algorithms or add support for new verification algorithms.

Challenge 2: Connecting the IVL to back-ends. Soundness requires that successful verification
of an IVL program by a back-end verifier implies the correctness of the IVL program. Since a

back-end verifier’s algorithm ultimately decides the outcome of a verification run, a soundness

proof needs to formally connect the concrete verification algorithm to the IVL’s semantics. In

particular, this soundness proof needs to consider the proof search algorithms and optimizations

performed by a concrete verification back-end and show that they produce correct results according

to the IVL semantics. However, different back-ends typically use a diverse range of strategies to (for

example) represent the program state, unroll recursive definitions, choose existentially-quantified

permission amounts, and select the footprints of magic wands [Dardinier et al. 2022b].

Challenge 3: Connecting the IVL to front-ends. Soundness also requires that the correctness

of the IVL program implies the correctness of the input program with respect to its intended

verification logic. Such soundness proofs are difficult due to the large semantic gap between input

and IVL programs. The two programs may use different reasoning concepts and proof rules, which

need to be connected by a soundness proof. This gap is particularly large for typical encodings

into IVLs based on separation logic, because the verification logic for the source of this translation

is typically different from the one for the IVL program, e.g., one of the vast wealth of concurrent

separation logics. For instance, a parallel composition of two threads in the input program is

typically encoded as three sequential IVL programs: two for the parallel branches, each of which is

verified using a separate specification provided by the user, and one for the enclosing code, which

composes the two specifications to encode the behavior of the parallel composition overall. Such a

translation of front-end proof rules into multiple sequential verification problems is not obvious; a

soundness proof must bridge this gap.

Prior work. Several works formalize aspects of translational verifiers with IVLs based on separa-

tion logic, but none of them addresses all three challenges outlined above. For Viper, Parthasarathy

et al. [2024] build a proof-producing version of Viper’s verification condition generation back-end,

but do not attempt to connect it to front-end languages nor give a general semantics for Viper

that would also capture Viper’s symbolic execution back-end. Similarly, Zimmerman et al. [2024]

formalize a version (only) of Viper’s symbolic execution back-end; their focus is on adapting it to

gradual verification. Vogels et al. [2015] show the soundness of the symbolic execution of Veri-

Fast [Jacobs et al. 2011] w.r.t. an input C program.
1
However, VeriFast has only a single (symbolic

execution) back-end that is used as the basis for multiple front-end languages (C, Java, Rust) and

thus the formalization does not abstract over different verification algorithms.

Maksimovic et al. [2021b] briefly describe a soundness framework for GIL [Maksimovic et al.

2021a], a parametric program representation used by the Gillian project. GIL needs to be instan-

tiated with a state model, primitive assertions, and memory actions to obtain specific intermedi-

ate representations (essentially, multiple IVLs) useful for different verification projects (e.g., for

JavaScript [Maksimovic et al. 2021a] and Rust [Ayoun et al. 2024]). However, each GIL instantiation

also determines the back-end verification algorithm. As such, there is no common semantics that

abstracts over different verification algorithms.

1
VeriFast itself is not an IVL, but must address similar challenges to IVLs based on separation logic since VeriFast’s symbolic

execution is used to justify multiple front-end languages (C, Java, Rust) using separation logic reasoning; its symbolic

execution also has strong similarities with IVL back-ends.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 20. Publication date: January 2025.

20:4 Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J. Summers, and Peter Müller

This work. In this paper, we present a framework for formally justifying translational separation

logic verifiers. At its center is a generic IVL, called CoreIVL, that captures the essence of different

IVLs based on separation logics. In particular, CoreIVL can be instantiated with different statements,

assertion languages, and separation algebras; we use a generalized notion of separation algebra

that allows us to also model the implicit dynamic frames logic used in Viper.

To address Challenge 1 above, we define the semantics of CoreIVL (and correspondingly, each of

its instantiations) using dual (i.e., demonic and angelic) non-determinism. Demonic non-determinism

is a standard technique to verify properties for all inputs, thread schedules, etc. Our novel insight is to

complement it with angelic non-determinism to abstract over the different proof search algorithms

employed by back-ends. Intuitively, the IVL program is correct if any of these algorithms succeeds,

which is an angelic behavior.

To address Challenge 2, we define an operational semantics for CoreIVL, which incorporates

these notions of dual non-determinism and, like CoreIVL itself, is parametric in the separation

algebra to support both separation logic and IDF. An operational semantics facilitates proving

a formal connection to the concrete verification algorithms used in back-ends. Separation logic

verifiers typically perform symbolic execution, which is typically described operationally [de Boer

and Bonsangue 2021] and (as we show) can be connected to our operational semantics via a

standard simulation proof. Similarly, an operational IVL semantics is well-suited for formalizing

the connections to back-ends that encode IVL programs into a further, more basic IVL, such as

Viper’s verification condition generator, which encodes Viper programs into Boogie.

To address Challenge 3, we define an axiomatic semantics for CoreIVL and prove its equivalence

to our operational semantics. An axiomatic semantics facilitates proving a formal connection to

the program logic used on the front-end level because both deal with derivations, which are often

structurally related due to the compositional nature of most IVL translations. In addition, we are

able to prove some powerful generic results about idiomatic encoding patterns once-and-for-all,

further minimizing the instantiation-specific gap that a formal soundness proof needs to bridge.

We illustrate the practical applicability of our formal framework by instantiating CoreIVL with

elements of Viper. We use the resulting operational semantics to prove the soundness of two

verification back-ends: a formalization of the central features of Viper’s symbolic execution back-

end, and a pre-existing formalization of Viper’s verification condition generator [Parthasarathy

et al. 2024]. These proofs demonstrate, in particular, that our use of angelic non-determinism allows

us to capture these two rather disparate (and representative) back-ends. At the other end, we prove

soundness of a front-end based on concurrent separation logic using our axiomatic semantics.

These proofs demonstrate that our framework effectively closes the large semantic gap between

front-ends and back-ends and enables formal reasoning about the entire chain.

Contributions and outline. We make the following technical contributions:

• We present a formal framework for reasoning about translational separation logic verifiers,

via a parametric language CoreIVL, for which we define a novel operational semantics

combining core separation-logic reasoning principles and dual non-determinism. We define

an alternative axiomatic semantics, and show its equivalence with our operational semantics.

• We define a Viper instantiation of CoreIVL. We formalize and prove the soundness of the

core of Viper’s symbolic execution back-end. Similarly, we show soundness of an existing

formalization of Viper’s back-end based on verification condition generation. These proofs

illustrate how angelic non-determinism can abstract over these different algorithmic choices.

• We formalize a front-end for a simple concurrent language to be verified with concurrent

separation logic, as well as its standard encoding as employed in translational verifiers, and

prove this encoding sound with respect to our axiomatic semantics for CoreIVL.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 20. Publication date: January 2025.

Formal Foundations for Translational Separation Logic Verifiers 20:5

Operational

semantics

Axiomatic

semantics Thm. 2

Thm. 5§3.3 §3.2

CSL
Thm

. 9

ParImp

semantics

Thm. 8

§5.1

§5.1

......

Symbolic execution

VCGSem

...

T
hm

. 6

Thm. 7

VCG

§4.1

§4.2

Front-ends (§5) Back-ends (§4)CoreIVL (§3)

ViperCore instantiation (§3.4)

Fig. 1. Overview of our framework and its application to Viper. The yellow boxes represent components

of our framework (such as semantics and logics), while the arrows show the theorems that connect them.

The dashed arrows and the unlabeled yellow boxes represent potential additional front-ends and back-ends

that could be connected to ViperCore. CSL stands for concurrent separation logic, and VCG for verification

condition generation. VCG has been formally connected to VCGSem by Parthasarathy et al. [2024].

We give an overview of our key ideas in §2. We define the operational and axiomatic IVL semantics

in §3. We discuss how to prove back-end soundness in §4 and front-end soundness in §5. We discuss

related work in §6 and conclude in §7.

All formalizations and proofs in this paper are mechanized in the Isabelle proof assistant [Nipkow

et al. 2002] and our mechanization is publicly available [Dardinier et al. 2024b].

2 Key Ideas
In this section, we present the key ideas behind our work. Our framework and its instantiation

to Viper is presented in Fig. 1. At its center is CoreIVL (depicted by the grey area), a general

core language for representing SL-based IVLs. This core language bridges the substantial gap

between proofs of high-level programs using custom verification logics (e.g., concurrent separation
logic [O’Hearn 2004] (CSL) in the figure) at the front-end level and verification algorithms for

SL-based IVLs at the back-end level (e.g., symbolic execution and verification condition generation).

CoreIVL is parametric in its state model and assertions, so that it can represent multiple variants of

separation logic (e.g., those on which VeriFast and GIL are based), including implicit dynamic frames

(on which Viper is based). In Fig. 1, ViperCore represents the instantiation of these parameters for

Viper. We give two equivalent semantics to CoreIVL: An operational semantics, which is designed

to enable soundness proofs for diverse back-end verification algorithms (shown on the right of

Fig. 1), and an axiomatic semantics, which can be used to prove front-end translations into CoreIVL

sound, by connecting this axiomatic semantics to the front-end separation logic (shown on the left).

The rest of this section is organized as follows. §2.1 introduces the general core language CoreIVL
for representing SL-based IVLs. §2.2 illustrates how to check for the existence of a Concurrent

Separation Logic front-end proof for a parallel program by encoding the verification problem into

our sequential CoreIVL, mimicking the approach of modern translational verifiers. §2.3 presents the

formal operational semantics of CoreIVL. Finally, §2.4 presents an alternative equivalent axiomatic
semantics for CoreIVL, and shows how it can be leveraged to prove a front-end translation sound.

2.1 A Core Language for SL-Based IVLs
In this section, we first motivate and then define a core language for SL-based IVLs, called Cor-
eIVL, which captures central aspects of SL-based verifiers, such as Viper [Müller et al. 2016b],

Gillian [Santos et al. 2020; Maksimovic et al. 2021a], or VeriFast [Jacobs et al. 2011].

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 20. Publication date: January 2025.

20:6 Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J. Summers, and Peter Müller

𝐶 F inhale 𝐴 | exhale 𝐴 | havoc 𝑥 | 𝐶;𝐶 | if(𝑏) {𝐶} else {𝐶} | 𝑥 := 𝑒 | skip | custom 𝐶′

Fig. 2. Syntax of statements in CoreIVL. 𝐴 is an assertion, 𝑥 a variable, 𝑏 a Boolean expression, 𝑒 an arbitrary

expression. Assertions and expressions are represented semantically as sets of states and partial functions

from states to values, respectively. 𝐶′
represents custom statements and is a parameter of the language.

Manipulating SL states via inhale and exhale. At the core of these verifiers is the SL state

they track throughout the verification, typically containing a heap (a mapping from heap locations

to values) and SL resources (such as fractional permissions to heap locations). This SL state is

manipulated with two verification primitives: inhale 𝐴 (also called assume* and produce) and
exhale 𝐴 (also called assert* and consume), where 𝐴 is a separation logic assertion. inhale 𝐴
assumes the logical constraints in 𝐴 (e.g., constraints on integer values), and adds the resources

(e.g., ownership of heap locations) specified by 𝐴 to the current state. Dually, exhale 𝐴 asserts

that the logical constraints in 𝐴 hold, and removes the resources specified by 𝐴 from the current

state. These two primitives can encode the verification conditions for a wide variety of program

constructs. For instance, a procedure call is encoded as exhaling the call’s precondition (to check its

logical constraints and transfer ownership of resources from caller to callee), followed by inhaling

the postcondition (to assume logical constraints and gain resources back from the call).

Diversity of logics and their semantics. While SL-based IVLs all employ some version of these

two inhale and exhale primitives, their actual logics are surprisingly diverse in both core connectives

and their semantics. GIL and VeriFast support different separation logics, while Viper uses implicit

dynamic frames (IDF), a variation of separation logic that allows for heap-dependent expressions in

assertions (e.g., separation logic’s points-to predicate 𝑒.𝑓 ↦→ 𝑣 is expressed as acc(𝑒.𝑓) ∗ 𝑒.𝑓 = 𝑣 in

IDF, in which the ownership of the heap location and a logical constraint on its value are expressed

as two separate conjuncts)
2
.

IVLs also support different SL connectives: Viper supports iterated separating conjunctions [Müller

et al. 2016a], Viper and Gillian support magic wands [Dardinier et al. 2022b; Schwerhoff and Sum-

mers 2015], Viper and VeriFast support fractional recursively-defined predicates [Boyland 2003;

Dardinier et al. 2022a], and VeriFast supports arbitrary existential quantification.

A standard approach for generic reasoning over large classes of separation logics is to build rea-

soning principles based on a separation algebra (built over a partial commutative monoid) [Calcagno

et al. 2007; Dockins et al. 2009]. We extend this classic concept to a novel notion of IDF algebra, which
can model separation logics and IDF alike. In particular, IDF algebras allow asserting knowledge

about the value of heap locations 𝑒.𝑓 without asserting ownership of the heap location itself.

Core Language. The syntax of CoreIVL is shown in Fig. 2. To capture the diversity of assertions

supported in existing SL-based IVLs, assertions 𝐴 in our core language are semantic, i.e., assertions
are sets of states (as opposed to fixing a syntax, and having the semantics for this syntax determine

the set of states in which a syntactic assertion is true); states themselves are taken from any

chosen IDF algebra. Similarly, expressions 𝑒 are semantically represented as partial functions from

states to values. Moreover, although we assume some core statements in our language, we allow

these to be arbitrarily extended via a parameter for custom statements 𝐶′
, for instance, to add field

assignments. The statements of our core language contain the key verification primitives inhale
and exhale described above, as well as havoc, which non-deterministically assigns a value to a

2
This difference also affects the semantic models; separation logic is typically formalized using partial heaps, whereas IDF

typically uses a total heaps model [Parkinson and Summers 2012].

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 20. Publication date: January 2025.

Formal Foundations for Translational Separation Logic Verifiers 20:7

method main(p: Cell)
// requires acc(p.v, _)

{
q := alloc(0)

// {𝑃𝑙 } {𝑃𝑟 }
q.v := p.v || tmp := p.v
// {𝑄𝑙 } {𝑄𝑟 }

tmp := tmp + q.v

free(q)

assert tmp = p.v + p.v
}

method main_ivl(p: Ref) {
inhale acc(p.v, _)

havoc q
inhale acc(q.v) * q.v = 0

exhale 𝑃𝑙 * 𝑃𝑟
havoc tmp
inhale 𝑄𝑙 * 𝑄𝑟

tmp := tmp + q.v

exhale acc(q.v)

exhale tmp = p.v + p.v
}

method l(p,q:Ref){
inhale 𝑃𝑙
q.v := p.v
exhale 𝑄𝑙

}

method r(p,q:Ref){
inhale 𝑃𝑟
tmp := p.v
exhale 𝑄𝑟

}

Fig. 3. A simple parallel program (left), annotated with a method precondition, as well as pre- and postcon-

ditions for the parallel branches, and its encoding into CoreIVL (instantiated to model Viper), consisting

of a main IVL method (middle) and two further methods (right) modeling the parallel branches (that

is, the premises of CSL’s parallel composition rule). We use the shorthands 𝑃𝑙 ≜ acc(𝑝.𝑣, _) ∗ acc(𝑞.𝑣),
𝑄𝑙 ≜ acc(𝑝.𝑣, _) ∗ acc(𝑞.𝑣) ∗ p.v = q.v, 𝑃𝑟 ≜ acc(𝑝.𝑣, _), and 𝑄𝑟 ≜ acc(𝑝.𝑣, _) ∗ tmp = p.v, where the IDF

assertion acc(𝑒, _) expresses non-zero permission to 𝑒 (corresponding to the SL assertion ∃𝑝, 𝑣 . 𝑒
𝑝

↦→ 𝑣).

variable. Combined with conditional branching, inhale, exhale, and havoc allow us to encode

many important statements, such as while loops, procedure calls, and even proof rules for parallel

programs, as we show in the next subsection.

2.2 Background: Translational Verification of a Parallel Program
We use the parallel program on the left in Fig. 3 to illustrate how translational verification works,

and the challenges that arise in formalizing this widely-used approach. This program takes as input

a Cell p (an object with a value field v), allocates a new Cell q, assigns the value of p.v in parallel

to q.v and to the variable tmp, then adds the value of q.v to tmp, deallocates q, and finally asserts

that tmp is equal to p.v + p.v. Our goal is to verify this program in Concurrent Separation Logic

(CSL) [O’Hearn 2004], that is, by encoding the program and the proof rules of CSL into CoreIVL. In

particular, we want to prove that the assertion on its last line holds.

Although the original CSL is presented via standard separation logic syntax, we use the syntax

of IDF to annotate this example. The syntax acc(e.v, f) denotes fractional permission (ownership)

of the heap location e.v (where 𝑓 = 1 allows reading and writing, and a fraction 0 < 𝑓 < 1 allows

reading) [Boyland 2003]. The syntax acc(p.v, _) (used as precondition in our example) denotes a

so-called wildcard permission (or wildcard in short); it is shorthand for ∃𝑓 > 0. acc(p.v, 𝑓), which
guarantees read access while abstracting the precise fraction.

Correctness of our example means proving a CSL triple Δ ⊢CSL [acc(p.v, _)] 𝐶 [⊤], where 𝐶 is

the body of the method main in the front-end (left) program (⊤ is the trivial postcondition). Instead

of constructing a proof directly, a translational verifier maps this to an IVL program (shown as a

CoreIVL program to the middle and right of Fig. 3) whose correctness implies the existence of a

CSL proof for the original program.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 20. Publication date: January 2025.

20:8 Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J. Summers, and Peter Müller

Encoding the program into CoreIVL. Our encoding models each proof task of the CSL verifica-

tion problem as a separate IVL method, whose statements reflect the individual proof steps [Leino

and Müller 2009]. The IVL methods main_ivl, l and r are constructed such that the correctness of

all three implies the existence of a valid CSL proof for main.
The precondition acc(p.v, _) of main is modeled by the first inhale statement in main_ivl,

reflecting that the proof of the main method may rely on the resources and assumptions guaranteed

by this precondition. The allocation q := alloc(0) is then encoded via a havoc and an inhale
statement to non-deterministically choose a memory location and obtain a full (i.e., 1) permission.

Dually, the deallocation free(q) after the parallel composition is encoded via an exhale statement,

which removes this (full) permission from the IVL state. Since permissions are non-duplicable

(technically, affine) resources, this encoding guarantees that no permission can remain and so any

attempt to later access this location would cause a verification failure.

To understand the encoding of a source-level parallel composition, we recall the CSL proof rule
3
:

Par

Δ ⊢CSL [𝑃𝑙] 𝐶𝑙 [𝑄𝑙] Δ ⊢CSL [𝑃𝑟] 𝐶𝑟 [𝑄𝑟]
Δ ⊢CSL [𝑃𝑙 ∗ 𝑃𝑟] 𝐶𝑙 | | 𝐶𝑟 [𝑄𝑙 ∗𝑄𝑟]

From the point of view of the outer thread (forking and joining the parallel branches), the overall

effect of the parallel composition can be seen as giving up the separating conjunction 𝑃𝑙 ∗ 𝑃𝑟 of the
preconditions of the parallel branches, and obtaining the corresponding postconditions 𝑄𝑙 ∗𝑄𝑟

before resuming any remaining code
4
. This exchange of assertions across the triple in the conclusion

of the rule (as well as the intervening modification of tmp) is modeled in the IVL program by the

sequence exhale 𝑃𝑙 ∗ 𝑃𝑟 ; havoc tmp; inhale 𝑄𝑙 ∗𝑄𝑟 .

The premises of the parallel rule are checked by verifying two extra methods l and r, whose pre-
and postconditions correspond to the Hoare triples from the rule premises directly. The encoded

bodies of l and r follow the standard pattern: an inhale of their preconditions (which can be seen

as the other “half” of the transfer from the outer thread, modeled by exhale 𝑃𝑙 ∗𝑃𝑟), the translation
of their source implementations, and finally an exhale of their postconditions.

If running a back-end verifier for the IVL on the three encoded methods succeeds, we have

demonstrated that a CSL proof for the original program exists—provided that the translational

verification is sound. Soundness depends on a non-trivial translation, the subtle semantics of an

IVL, and the algorithms employed by back-end verifiers. In the rest of this section, we explain our

formal framework for establishing the soundness of translational verifiers.

2.3 Operational Semantics and Back-End Verifiers
To make formal claims about an IVL program, we need a formal semantics and notion of correctness

for the IVL itself. As explained in the introduction, an operational semantics facilitates a formal

connection to various back-end algorithms, which typically have an operational flavor. Since

our semantics needs to capture verification algorithms that make heavy use of (demonic) non-

determinism (to model concurrency, allocation, or abstract modularly over the precise behavior

of program elements), our operational semantics embraces such non-determinism. Moreover, to

account for the diversity of the verification algorithms used in back-ends, our semantics also

incorporates the dual notion of angelic non-determinism.

Consider verifying the statement exhale acc(a.v) ∨ acc(b.v), which requires giving up (full)

permission to either a.v or b.v; if the original state holds both permissions, either choice avoids

3
We omit technical side-conditions from the original rule that restrict mutation of variables shared amongst threads; these

are taken care of properly in real verifiers and our formalizations.

4
We assume (as is common for modular verifiers) that each thread’s specification is explicitly annotated, as in main.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 20. Publication date: January 2025.

Formal Foundations for Translational Separation Logic Verifiers 20:9

InhaleOp

⟨inhale 𝐴,𝜔 ⟩ →Δ {𝜔 } ∗𝐴

ExhaleOp

𝜔 = 𝜔 ′ ⊕ 𝜔𝐴 𝜔𝐴 ∈ 𝐴

⟨exhale 𝐴,𝜔 ⟩ →Δ {𝜔 ′ }

SeqOp

⟨𝐶1, 𝜔 ⟩ →Δ 𝑆1 ∀𝜔1 ∈ 𝑆1 . ⟨𝐶2, 𝜔1 ⟩ →Δ S(𝜔1)
⟨𝐶1;𝐶2, 𝜔 ⟩ →Δ ∪𝜔1∈𝑆1S(𝜔1)

(a) Selected operational semantics rules.

InhaleAx

Δ ⊢ [𝑃] inhale 𝐴 [𝑃 ∗𝐴]

ExhaleAx

𝑃 |= 𝑄 ∗𝐴
Δ ⊢ [𝑃] exhale 𝐴 [𝑄]

SeqAx

Δ ⊢ [𝑃] 𝐶1 [𝑅] Δ ⊢ [𝑅] 𝐶2 [𝑄]
Δ ⊢ [𝑃] 𝐶1;𝐶2 [𝑄]

(b) Selected axiomatic semantic rules.

Fig. 4. Selected simplified operational and axiomatic semantic rules.

a failure here, but results in different successor states, and so might affect whether subsequent

statements verify successfully. Such algorithmic choices occur for other IVL constructs, such as for

choosing the values of existentials (including the amount of permission for a wildcard permission),

or determining the footprints of magic wands. Our operational semantics makes all algorithmic
choices possible and defines a program as correct if any such choice avoids failure.

Operational semantics. To capture the dual non-determinism, we define our operational

semantics as a multi-relation [Rewitzky 2003; Guéneau et al. 2023]

⟨𝐶,𝜔⟩ →Δ 𝑆

where𝐶 is an IVL statement, 𝜔 an initial state, 𝑆 a set of final states, and Δ a type context (mapping

for example variables to types, i.e., to sets of values). The set 𝑆 captures the demonic choices, i.e.,
contains the resulting state for each possible demonic choice. On the other hand, angelic choices
are reflected by different result sets derivable in our semantics. Returning to our previous example,

if 𝜔 is a state with full permission to both a.v and b.v, our semantics allows for both transitions

⟨exhale acc(a.v) ∨ acc(b.v), 𝜔⟩ →Δ {𝜔−𝑎} and ⟨exhale acc(a.v) ∨ acc(b.v), 𝜔⟩ →Δ {𝜔−𝑏}
(where 𝜔−𝑎 and 𝜔−𝑏 are identical to 𝜔 but with the permission to a.v resp. b.v removed).

A successful verification by a back-end is represented by an execution in our operational seman-

tics, leading to the following definition of correctness of a CoreIVL statement:

Definition 1. A CoreIVL statement 𝐶 is correct for a well-formed initial state 𝜔 iff 𝐶 executes

successfully in 𝜔 , i.e., ∃𝑆. ⟨𝐶,𝜔⟩ →Δ 𝑆 . 𝐶 is valid iff it is correct for all well-formed initial states.

Fig. 4a shows simplified rules for the operational semantics of inhale 𝐴, exhale 𝐴, and se-

quential composition. The (non-simplified) rules for all statements are shown in §3. Inhaling A in

state 𝜔 leads to the set of all possible combinations 𝜔 ⊕ 𝜔𝐴 for 𝜔𝐴 ∈ 𝐴, capturing the demonic

non-determinism of inhale: All possible states satisfying 𝐴 must be considered in the rest of the

program. Dually, the rule ExhaleOp allows any choice of state 𝜔𝐴 satisfying 𝐴 (that is, uses angelic

non-determinism), and to remove it from 𝜔 . In our previous example, 𝜔 can be decomposed into

𝜔 = 𝜔−𝑎 ⊕ 𝜔𝑎 or 𝜔 = 𝜔−𝑏 ⊕ 𝜔𝑏 , where 𝜔𝑎 and 𝜔𝑏 respectively contain the permission to a.v and

b.v (and thus 𝜔𝑎 and 𝜔𝑏 both satisfy the exhaled assertion acc(a.v) ∨ acc(b.v)). The rule SeqOp

for sequential composition is more involved, since it needs to deal with the dual non-determinism:

It requires a single function S that maps every state 𝜔1 from 𝑆1 (the set of states obtained after

executing𝐶1 in 𝜔) to a set of states S(𝜔1) that can be reached by executing𝐶2 in 𝜔1. The choice of

the function S captures the angelic choices in 𝐶2.

Connection to back-end verifiers. To show that this operational semantics for CoreIVL is

indeed suitable to capture different verification algorithms, we connect it to formalizations of the

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 20. Publication date: January 2025.

20:10 Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J. Summers, and Peter Müller

two main back-ends used by Viper. First, we formalize a version of Viper’s symbolic execution

back-end [Schwerhoff 2016] in Isabelle/HOL and prove it sound against the operational semantics

of CoreIVL. Second, we connect the formalization of Viper’s verification condition generation

back-end by Parthasarathy et al. [2024] to CoreIVL by constructing a CoreIVL execution from a

successful verification by their back-end. The soundness proofs of these back-ends are described

in §4. There we will also see that the angelic choice described earlier in this section is crucial for

enabling these proofs since the two back-ends use different heuristics, in particular around exhaling

wildcard permissions.

2.4 Axiomatic Semantics
The previously-introduced definition of correctness (Def. 1) based on the operational semantics is

well-suited to connect to back-end verifiers. However, connecting it to front-end programs, and

especially logics such as CSL in our example from Fig. 3, requires substantial effort due to the large

semantic gap between the operational IVL semantics and the front-end logic. The IVL semantics

presented previously is operational, describes the execution from a single state, and exposes low-

level details (such as handling the dual non-determinism in the rule SeqOp). In contrast, the program

logic is axiomatic, describes the behavior of sets of states (via assertions), and is more high-level

(e.g., it uses an intermediate assertion in the rule SeqAx instead of the semantic function S). To
bridge this gap, we present an alternative (and, as we later prove, equivalent) axiomatic semantics

for CoreIVL, which is closer to the separation logics typically used for front-end programs and,

thus, simplify the proof that a front-end translation is sound.

Our axiomatic semantics uses judgments of the form

Δ ⊢ [𝑃] 𝐶 [𝑄]

where 𝑃 and𝑄 are semantic assertions (sets of states),𝐶 is an IVL statement, and Δ is a type context.

Intuitively, this triple expresses that 𝐶 can be executed successfully in any state from 𝑃 (with the

right angelic choices), and𝑄 is (precisely) the set of all states reached by these executions. Formally,

we want the following soundness property (we will present the completeness theorem in §3):

Theorem 2 (Operational-to-Axiomatic Soundness.). If the CoreIVL statement 𝐶 is well-typed and
valid (Def. 1) then there exists a set of states 𝐵 such that Δ ⊢ [⊤] 𝐶 [𝐵] holds.

Note that, in contrast to when one defines a proof system for a pre-existing operational semantics,

the desired implication here is from operational to axiomatic semantics; this is due to the connection

we are aiming for from back-end algorithms (defined operationally) to front-end proofs.

The rules for the axiomatic semantics of inhale 𝐴, exhale 𝐴, and sequential composition are

shown in Fig. 4b. The rule InhaleAx for inhale 𝐴 corresponds to the operational rule InhaleOp,

where 𝜔 has been lifted to the set of states 𝑃 (since 𝑃 ∗ 𝐴 =
⋃

𝜔∈𝑃 ({𝜔} ∗ 𝐴)). The rule ExhaleAx

for exhale 𝐴 is more involved, as it first requires weakening the set of initial states 𝑃 to 𝑄 ∗ 𝐴.
Weakening is in general necessary to disentangle the states in 𝑄 and 𝐴: For example, to exhale

acc(a.v) from a precondition acc(a.v) ∗ acc(b.v) ∗ a.v = b.v, we have to first drop the equality

a.v = b.v because otherwise the resulting postcondition would refer to a memory location that

is no longer owned. Moreover, similarly to how Hoare logic hides the induction necessary to

reason about unbounded while loops behind a loop invariant, our axiomatic semantics hides the

dual non-determinism of the operational semantics behind high-level connectives such as the

separating conjunction. Intuitively, in the rule ExhaleAx, the angelic choice is hidden in the choice

of 𝑄 and the split of every state in 𝑃 into a state in 𝑄 and a state in 𝐴. In our previous example

exhale acc(a.v) ∨ acc(b.v), we could choose 𝑄 to be either acc(a.v) or acc(b.v), i.e., we

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 20. Publication date: January 2025.

Formal Foundations for Translational Separation Logic Verifiers 20:11

Frame

Δ ⊢CSL [𝑃] 𝐶 [𝑄] fv(𝐹) ∩mod (𝐶) = ∅
Δ ⊢CSL [𝑃 ∗ 𝐹] 𝐶 [𝑄 ∗ 𝐹]

Par

Δ ⊢CSL [𝑃𝑙] 𝐶𝑙 [𝑄𝑙] Δ ⊢CSL [𝑃𝑟] 𝐶𝑟 [𝑄𝑟] . . .

Δ ⊢CSL [𝑃𝑙 ∗ 𝑃𝑟] 𝐶𝑙 | | 𝐶𝑟 [𝑄𝑙 ∗𝑄𝑟]

Seq

Δ ⊢CSL [𝑃] 𝐶1 [𝑅] Δ ⊢CSL [𝑅] 𝐶2 [𝑄]
Δ ⊢CSL [𝑃] 𝐶1;𝐶2 [𝑄]

Cons

Δ ⊢CSL [𝑃 ′] 𝐶 [𝑄 ′] 𝑃 |= 𝑃 ′ 𝑄 ′ |= 𝑄
Δ ⊢CSL [𝑃] 𝐶 [𝑄]

Alloc

𝑟 ∉ fv(𝑒)
Δ ⊢CSL [⊤] r := alloc(𝑒) [acc(r.v) ∗ 𝑟 .𝑣 = 𝑒]

Free

Δ ⊢CSL [acc(q.v)] free(q) [⊤]

Fig. 5. Selected CSL rules. In the rule Frame, fv(𝐹) and mod (𝐶) denote the set of variables free in 𝐹 and the

set of variables potentially modified by 𝐶 , respectively.

could derive both Δ ⊢ [acc(a.v) ∗ acc(b.v)] exhale acc(a.v) ∨ acc(b.v) [acc(a.v)] and
Δ ⊢ [acc(a.v) ∗ acc(b.v)] exhale acc(a.v) ∨ acc(b.v) [acc(b.v)].

Finally, the rule SeqAx for sequential composition illustrates how the axiomatic semantics abstracts

over the low-level details of the dual non-determinism in the operational semantics, such as the

existence of the semantic function S in rule SeqOp. Instead, the axiomatic rule SeqAx uses an

intermediate assertion 𝑅; its relation to S is proved once and for all in the soundness proof and,

thus, does not have to be proved for each front-end.

Crucially, we have designed the axiomatic semantics such that it contains exactly one rule per
statement. In particular, it contains no structural rules such as a frame rule or a consequence

rule, which are not necessary in our setting. This allows us to deconstruct an axiomatic semantic

derivation into smaller blocks, to then reconstruct a proof in the front-end logic. For example, one

can derive from Δ ⊢ [𝑃] 𝐶1;𝐶2 [𝑄] the existence of some assertion 𝑅 such that Δ ⊢ [𝑃] 𝐶1 [𝑅] and
Δ ⊢ [𝑅] 𝐶2 [𝑄] hold. Using this axiomatic semantics, we can now easily connect the correctness of

the IVL program to the correctness of the front-end program, as we explain next.

Connecting to front-end programs and logics. Let us now see how the axiomatic semantics

enables us to construct a CSL proof for the front-end program from Fig. 3. Concretely, we build a

CSL proof of the triple Δ ⊢CSL [acc(p.v, _)] 𝐶 [⊤], where𝐶 corresponds to the body of the method

main. To do this, we use the CSL rules shown in Fig. 5 and the CoreIVL triples Δ ⊢ [⊤] 𝐶 [𝐵] for
the methods l, r, and main_ivl that we obtain from Thm. 2.

The first step of proving the CSL triple for main is to pair each statement in main with the

corresponding code in main_ivl. For this, we use CSL’s Seq rule and (the inversion of) SeqAx to

split the proofs for main and main_ivl into smaller parts:

Δ ⊢ [⊤] inhale acc(p.v, _) [𝐴0]
Δ ⊢CSL [𝐴0] q := alloc(0) [𝐴1] Δ ⊢ [𝐴0] havoc q;inhale acc(q.v) * q.v = 0 [𝐴1]
Δ ⊢CSL [𝐴1] q.v := p.v || tmp := p.v [𝐴2] Δ ⊢ [𝐴1] exhale 𝑃𝑙∗𝑃𝑟 ; havoc tmp; inhale 𝑄𝑙∗𝑄𝑟 [𝐴2]
Δ ⊢CSL [𝐴2] tmp := tmp + q.v [𝐴3] Δ ⊢ [𝐴2] tmp := tmp + q.v [𝐴3]
Δ ⊢CSL [𝐴3] free(q) [𝐴4] Δ ⊢ [𝐴3] exhale acc(q.v) [𝐴4]
Δ ⊢CSL [𝐴4] assert tmp = p.v + p.v [𝐵] Δ ⊢ [𝐴4] exhale tmp = p.v + p.v [𝐵]

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 20. Publication date: January 2025.

20:12 Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J. Summers, and Peter Müller

Note how deconstructing the applications of SeqAx in the proof of main_ivl gives us intermediate

assertions 𝐴0−4, which we use to instantiate the intermediate assertion 𝑅 in Seq.
5
Matching state-

ments of the front-end program to segments of the CoreIVL program is straightforward since the

front-end translation is typically defined statement by statement.

After decomposing the sequential compositions, we justify the CSL triple for each primitive front-

end statement from the corresponding CoreIVL triple. For some statements like tmp := tmp + q.v,
this is trivial as the triples (and corresponding logic rules) match. Let us now focus on the most

interesting cases: q := alloc(0), q.v := p.v || tmp := p.v, and free(q).

The exhale-havoc-inhale pattern. To derive the CSL triples for these statements, we observe

that their encoding follows a pattern: The CoreIVL code first exhales the precondition 𝑃 of the CSL

rule (omitted if 𝑃 = ⊤), then havocs the variables modified by the statement (q for q := alloc(0)
and tmp for q.v := p.v || tmp := p.v), and finally inhales the postcondition 𝑄 of the CSL

rules (omitted if 𝑄 = ⊤), leading to the pattern exhale 𝑃 ; havoc 𝑥1; . . . ; havoc 𝑥𝑛 ; inhale 𝑄 . To
handle this general pattern, we can use the following lemma, which holds for any separation logic

L with a consequence rule and a frame rule (see §5 for the proof):

Lemma 1 (Exhale-havoc-inhale). For any separation logic L that has a frame rule and a consequence
rule, if Δ ⊢L [𝑃] 𝐶 [𝑄] holds and Δ ⊢ [𝐴] exhale 𝑃 ; havoc 𝑥1; . . . ; havoc 𝑥𝑛 ; inhale 𝑄 [𝐵] holds,
where {𝑥1, . . . , 𝑥𝑛} = mod (𝐶), then Δ ⊢L [𝐴] 𝐶 [𝐵] holds.

Intuitively, this lemma shows that a CoreIVL triple for the exhale-havoc-inhale pattern allows

us to obtain the corresponding CSL triple. In the case of q := alloc(0), this lets us lift Alloc
to the precondition 𝐴0 and postcondition 𝐴1, giving us exactly the triple we need. To justify

the triple for q.v := p.v || tmp := p.v, we need to establish the premises of the rule Par,

Δ ⊢CSL [𝑃𝑙] q.v := p.v [𝑄𝑙] and Δ ⊢CSL [𝑃𝑟] tmp := p.v [𝑄𝑟], which can be derived from the

correctness of the methods l and r using a lemma similar to Lemma 1, as we formally show in §5.

Summary. We have now seen how to justify the translational verification of the program from

Fig. 3 in CSL in three steps. First, we showed that the successful verification of its CoreIVL encoding

in a back-end implies that the CoreIVL program is valid. Second, we used the soundness theorem

for the axiomatic IVL semantics to derive judgments in the axiomatic semantics. Third, we use

those judgments to prove the desired CSL triple. Each of these steps is well-suited for its task: The

operational semantics allows us to connect to the back-end verifiers, while the axiomatic semantics

facilitates the reconstruction of the front-end logic proof—both linked by Thm. 2.

3 Semantics
In this section, we present an operational and an axiomatic semantics for the CoreIVL language

defined in Fig. 2. We first define in §3.1 an IDF algebra that captures both separation logic and

implicit dynamic frames state models. We then formalize the operational semantics of CoreIVL in

§3.2 and define its axiomatic semantics and prove their equivalence in §3.3. We instantiate CoreIVL

for key features of Viper in §3.4.

3.1 An Algebra for Separation Logic and Implicit Dynamic Frames
A standard way to capture different separation logic state models is to use a separation alge-
bra [Calcagno et al. 2007; Dockins et al. 2009], i.e., a partial commutative monoid (Σ, ⊕), where
Σ is the set of all states, and ⊕ is a partial, commutative, and associative binary operator, used to

5
Note that the CSL we use in this paper has the same state model as the IVL, and thus the IVL assertions do not need to

be converted to CSL assertions. Our axiomatic semantics can also be used to reconstruct proofs in program logics with

different state models, but this goes beyond the scope of this paper.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 20. Publication date: January 2025.

Formal Foundations for Translational Separation Logic Verifiers 20:13

𝑎 ⊕ 𝑏 = 𝑏 ⊕ 𝑎 𝑎 ⊕ (𝑏 ⊕ 𝑐) = (𝑎 ⊕ 𝑏) ⊕ 𝑐 𝑐 = 𝑎 ⊕ 𝑏 ∧ 𝑐 = 𝑐 ⊕ 𝑐 ⇒ 𝑎 = 𝑎 ⊕ 𝑎

𝑥 = 𝑥 ⊕ |𝑥 | |𝑥 | = |𝑥 | ⊕ |𝑥 | 𝑥 = 𝑥 ⊕ 𝑐 ⇒ |𝑥 | ⪰ 𝑐 |𝑎 ⊕ 𝑏 | = |𝑎 | ⊕ |𝑏 |

𝑥 ⊕ 𝑎 = 𝑥 ⊕ 𝑏 ∧ |𝑎 | = |𝑏 | ⇒ 𝑎 = 𝑏 stable(𝜔) ⇒ 𝜔 = stabilize(𝜔) stable(stabilize(𝜔))

stabilize(𝑎 ⊕ 𝑏) = stabilize(𝑎) ⊕ stabilize(𝑏) 𝑥 = stabilize(𝑥) ⊕ |𝑥 | 𝑎 = 𝑏 ⊕ stabilize(|𝑐 |) ⇒ 𝑎 = 𝑏

Fig. 6. Axioms for our IDF algebra (Σ, ⊕, |_|, stable, stabilize). We define (𝜔 ′ ⪰ 𝜔) ≜ (∃𝑟 . 𝜔 ′ = 𝜔 ⊕ 𝑟).

combine states (e.g., via the separating conjunction operator ∗). In SL, assertions about values of

heap locations must also assert ownership of those heap locations. In particular, asserting that

a heap location x.f has a value 5 requires using the points-to predicate x.f ↦→ 5), which also

expresses ownership of the location x.f. This requirement is embedded in the SL state model. For

example, a typical SL state with a heap and fractional permissions (ignoring local variables for

now) is ΣSL ≜ (𝐿 ⇀ (𝑉 × (0, 1])), i.e., a partial function from a set 𝐿 of heap locations to pairs of

values from a set 𝑉 and positive fractional permissions. That is, any value for a heap location is

associated with a strictly positive permission.

In contrast, in implicit dynamic frames, an assertion may constrain the value of a heap location

independently of expressing ownership. For example, x.f = 5 is a valid IDF assertion that expresses

that x.f stores the value 5 without expressing ownership of x.f. However, IDF requires assertions
used as pre- and postconditions, loop invariants, frames (for the frame rule), etc. to be self-framing,
that is, to express ownership of all heap locations they mention. For example, acc(x.f) ∗ x.f = 5

is self-framing, while x.f = 5 is not. To capture IDF states with fractional permissions, we define

the state model ΣIDF ≜ (𝐿 ⇀ 𝑉) × (𝐿 ⇀ [0, 1]).6 In contrast to ΣSL, values and permissions are

separated in ΣIDF , which allows states (ℎ, 𝜋) where ℎ(x.f) = 5 but 𝜋 (x.f) = 0.

We call a state (ℎ, 𝜋) ∈ ΣIDF stable iff it contains values exactly for the heap locations with

non-zero permission, i.e., dom(ℎ) = {𝑙 | 𝜋 (𝑙) > 0}. Stable states are exactly those that can be

represented as states in ΣSL; By construction, all states in ΣSL are stable.

To capture arbitrary SL and IDF states, we define an IDF algebra as follows:

Definition 3. An IDF algebra is a tuple (Σ, ⊕, |_|, stable, stabilize) that satisfies all axioms in Fig. 6,

where Σ is a set of states, ⊕ is a partial, commutative, and associative addition on Σ (i.e., a partial
function from Σ × Σ to Σ), |_| and stabilize are endomorphisms of Σ, and stable is a predicate on Σ.

The set Σ and the partial addition ⊕ are the standard components of a separation algebra. Using

⊕, we define the standard partial order ⪰ induced by ⊕ as (𝜔 ′ ⪰ 𝜔) ≜ (∃𝑟 . 𝜔 ′ = 𝜔 ⊕ 𝑟). We require

positivity (𝑐 = 𝑎 ⊕ 𝑏 = 𝑐 ∧ 𝑐 = 𝑐 ⊕ 𝑐 ⇒ 𝑎 = 𝑎 ⊕ 𝑎) to ensure that the partial order is antisymmetric

(𝑎 ⪰ 𝑏 ∧ 𝑏 ⪰ 𝑎 ⇒ 𝑎 = 𝑏). Intuitively, the endomorphism |_| projects a state 𝜔 on its largest

duplicable part, i.e., |𝜔 | is the largest state smaller than 𝜔 such that |𝜔 | = |𝜔 | ⊕ |𝜔 |. Similarly, the

endomorphism stabilize projects a state 𝜔 on its largest stable part, i.e., stabilize(𝜔) is the largest
stable state smaller than 𝜔 .

Instantiations. For our concrete IDF state model ΣIDF , the combination (ℎ1, 𝜋1) ⊕ (ℎ2, 𝜋2)
is defined iff ℎ1 and ℎ2 agree on the locations to which both states hold non-zero permission

and the sums of their permissions pointwise is at most 1, i.e., iff ∀𝑙 . (𝜋1 (𝑙) + 𝜋2 (𝑙) ≤ 1) ∧ (𝑙 ∈
dom(ℎ1) ∩ dom(ℎ2) ⇒ ℎ1 (𝑙) = ℎ2 (𝑙)). When the combination is defined, (ℎ1, 𝜋1) ⊕ (ℎ2, 𝜋2) ≜
(ℎ1∪ℎ2, 𝜋1+𝜋2). Knowledge about heap values is duplicable, whereas permissions are not. Thus, |_|
6
In addition, values must exist for those heap locations where the state has non-zero permission. That is, ΣIDF is restricted

to states (ℎ, 𝜋) such that ∀𝑙 . 𝜋 (𝑙) > 0 ⇒ 𝑙 ∈ dom(ℎ) .

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 20. Publication date: January 2025.

20:14 Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J. Summers, and Peter Müller

puts all permissions to 0 but preserves the heap, i.e., | (ℎ, 𝜋) | ≜ (ℎ, 𝜆𝑙 . 0). Moreover, stabilize erases

all values for heap locations to which the state does not hold any permission, i.e., stabilize((ℎ, 𝜋)) ≜
((𝜆𝑙 . if 𝜋 (𝑙) > 0 then ℎ(𝑙) else ⊥), 𝜋).
Separation algebra instances can also be instantiated as IDF algebras, by defining stable to be

true for all states, and stabilize to be the identity function on Σ. For example, ΣSL (defined above)

can be instantiated as an IDF algebra with these definitions of stable and stabilize, and with |_|
mapping every state to the unit state (where all permissions are 0, and the domain of the heap

is empty). Moreover, like separation algebras [Dockins et al. 2009; Jung et al. 2015], IDF algebras

support standard constructions like the agreement algebra (where only 𝜔 = 𝜔 ⊕ 𝜔 holds), and can

be constructed by combining smaller algebras, via combinators such as product and sum types

(where both types must be IDF algebras), function types (where only the codomain must be an IDF

algebra), etc.

State model for CoreIVL. Our CoreIVL framework can be instantiated for any IDF algebra. We

obtain the state model by extending this IDF algebra with a store of local variables, i.e., a partial
mapping from variables in Var to values in Val. Concretely, given an IDF algebra with carrier set Σ,
we define the state model for CoreIVL as the product algebra ΣIVL ≜ ((Var ⇀ Val) × Σ), where
the store Var ⇀ Val is instantiated to the agreement algebra, i.e., addition on stores is defined for

identical stores (as the identity). Using the agreement algebra for the store ensures that inhale
and exhale have no effect on local variables.

Self-framing IDF assertions. Given an arbitrary IDF algebra, we can define a general notion of

self-framing assertions and assertions framing other assertions as follows.

Definition 4. In the following, 𝑃 is an IDF assertion (i.e., a set of states from an IDF algebra).

• 𝑃 is self-framing, written selfFraming(𝑃), iff ∀𝜔.𝜔 ∈ 𝑃 ⇔ stabilize(𝜔) ∈ 𝑃 .
• A state 𝜔 frames 𝑃 , written frames(𝜔, 𝑃), iff selfFraming({𝜔} ∗ 𝑃).
• An IDF assertion 𝐵 frames 𝑃 , written frames(𝐵, 𝑃), iff ∀𝜔 ∈ 𝐵. stable(𝜔) ⇒ frames(𝜔, 𝑃).
• 𝑃 frames an expression (i.e., a partial function from states to values) 𝑒 , written frames(𝑃, 𝑒),
iff 𝑒 (𝜔) is defined for all states 𝜔 ∈ 𝑃 .

Those different notions are tightly connected: If 𝐴 is self-framing and 𝐴 frames 𝐵 then 𝐴 ∗ 𝐵 is

self-framing. For example, the assertion 𝐴 ≜ (acc(x.f) ∗ x.f = 5) is self-framing, because any

state 𝜔𝐴 ∈ 𝐴 has full permission to x.f, and thus stabilize(𝜔𝐴) will retain the knowledge that

x.f is 5, and hence stabilize(𝜔𝐴) ∈ 𝐴. In contrast, the assertion 𝐵 ≜ (x.f = 5) is not self-framing,

since a state 𝜔𝐵 with no permission to x.f but with the knowledge that x.f is 5 satisfies 𝐵, but

stabilize(𝜔𝐵) will not retain the knowledge that x.f = 5, and hence will not satisfy 𝐵. Moreover,

any state that satisfies acc(x.f) frames 𝐵, thus the assertion acc(x.f) frames 𝐵. Note that, in an

instantiation with SL states (e.g., ΣSL), all assertions are self-framing, since all SL states are stable.

3.2 Operational Semantics
We now formally define the operational semantics of CoreIVL for the state model described above

(given an arbitrary IDF algebra). As explained in §2.3, our operational semantics has judgments of

the form ⟨𝐶,𝜔⟩ →Δ 𝑆 , where Δ is a type context,
7 𝐶 is a statement, 𝜔 is a state, and 𝑆 is a set of

states (to capture demonic non-determinism; angelic non-determinism is captured by the existence

of different derivations ⟨𝐶,𝜔⟩ →Δ 𝑆1 and ⟨𝐶,𝜔⟩ →Δ 𝑆2).

7
In this section, we do not discuss typing in details, but our Isabelle formalization includes it. In particular, it ensures that

our operational and axiomatic semantics deal only with well-typed states, i.e., states whose local store and heap contain

values of the right types (defined by the type context Δ). By default, all states discussed in this section are well-typed.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 20. Publication date: January 2025.

Formal Foundations for Translational Separation Logic Verifiers 20:15

InhaleOp

frames(𝜔,𝐴)
⟨inhale 𝐴,𝜔 ⟩ →Δ {𝜔 ′ | ∃𝜔𝐴 ∈ 𝐴.𝜔 ′ = 𝜔 ⊕ 𝜔𝐴 ∧ stable(𝜔 ′) }

ExhaleOp

𝜔 = 𝜔 ′ ⊕ 𝜔𝐴 𝜔𝐴 ∈ 𝐴 stable(𝜔 ′)
⟨exhale 𝐴,𝜔 ⟩ →Δ {𝜔 ′ }

SeqOp

⟨𝐶1, 𝜔 ⟩ →Δ 𝑆1 ∀𝜔1 ∈ 𝑆1 . ⟨𝐶2, 𝜔1 ⟩ →Δ S(𝜔1)
⟨𝐶1;𝐶2, 𝜔 ⟩ →Δ ∪𝜔1∈𝑆1S(𝜔1)

AssignOp

Δ(𝑥) = 𝜏 𝑒 (𝜔) = 𝑣 𝑣 ∈ 𝜏

⟨𝑥 := 𝑒,𝜔 ⟩ →Δ {𝜔 [𝑥 ↦→ 𝑣] }
SkipOp

⟨skip, 𝜔 ⟩ →Δ {𝜔 }

HavocOp

Δ(𝑥) = 𝜏

⟨havoc 𝑥,𝜔 ⟩ →Δ {𝜔 [𝑥 ↦→ 𝑣] | 𝑣 ∈ 𝜏 }

IfTOp

𝑏 (𝜔) = ⊤ ⟨𝐶1, 𝜔 ⟩ →Δ 𝑆1

⟨if(𝑏) {𝐶1} else {𝐶2}, 𝜔 ⟩ →Δ 𝑆1

IfFOp

𝑏 (𝜔) = ⊥ ⟨𝐶2, 𝜔 ⟩ →Δ 𝑆2

⟨if(𝑏) {𝐶1} else {𝐶2}, 𝜔 ⟩ →Δ 𝑆2

Fig. 7. Operational semantics rules.

The rules for the operational semantics are given in Fig. 7. As shown by the rule InhaleOp,

inhale 𝐴 can reduce in a state 𝜔 only if 𝜔 frames 𝐴. In our concrete instantiation ΣIDF , this

means that 𝜔 or 𝐴 must contain the permission to any heap location mentioned in 𝐴. For example,

inhale x.f = 5 can reduce correctly only in a state 𝜔 that has some permission to x.f. If 𝜔
has a different value than 5 for x.f, the statement will reduce to an empty set of states, i.e.,
⟨inhale x.f = 5, 𝜔⟩ →Δ ∅, capturing the fact that we inhaled an assumption inconsistent with

our state. In this case, the rest of the program is trivially correct (because it will be executed in

no state). If 𝜔 has value 5 for x.f, then the statement will reduce to the singleton set {𝜔}, i.e.,
⟨inhale x.f = 5, 𝜔⟩ →Δ {𝜔}. Finally, inhaling acc(x.f) in a state 𝜔 with no permission and no

value to x.f will result in a set with multiple states (potentially infinitely many), one state for each

possible value of x.f. We require stable(𝜔 ′) in the rule to ensure that executing a statement in any

stable state leads to a set of stable states, i.e., ∀𝜔. stable(𝜔) ∧ ⟨𝜔,𝐶⟩ →Δ 𝑆 ⇒ (∀𝜔 ′ ∈ 𝑆. stable(𝜔 ′)).
In other words, the operational semantics preserves the stability of states.

Dually, the rule ExhaleOp requires the final state 𝜔 ′
to be stable. This ensures that values of heap

locations for which the state lost all permission will be erased. For example, exhale acc(𝑥 .𝑓)
succeeds only in a state with full permission to x.f, and results in a final state without any

permission nor value for x.f. Note that the rule ExhaleOp is the only atomic rule that uses angelic

nondeterminism, because the rule can be applied with different 𝜔 ′
(corresponding to different

angelic choices). (The rules InhaleOp and HavocOp use demonic non-determinism, while AssignOp

and SkipOp are deterministic.) The rule SeqOp first executes 𝐶1 in 𝜔 , which yields a set of states 𝑆1.

Since 𝑆1 captures demonic choices, 𝐶2 must be executed in all states from 𝑆1, but the angelism in

𝐶2 can be resolved differently for each state, which is captured by the choice of the function S. The
function S must map every state 𝜔1 from 𝑆1 (the set of states obtained after executing𝐶1 in 𝜔) to a

set of states S(𝜔1) that can be reached by executing 𝐶2 in 𝜔1.

Finally, note that expressions in CoreIVL are semantic, i.e., they are partial functions from states

to values. We model them as partial functions because they might be heap-dependent, and thus

might not be defined for all states. For example, the expression x.f = 5 is only meaningful in states

where x.f has a value. The rules AssignOp, IfTOp, and IfFOp require that the expressions are defined

in the initial state 𝜔 .

3.3 Axiomatic Semantics
Using the same extended state model as in the operational semantics, we define an axiomatic

semantics with judgments of the form Δ ⊢ [𝑃] 𝐶 [𝑄], where Δ is a type context, 𝑃 and 𝑄 are

assertions (sets of states), and𝐶 is a CoreIVL statement. All rules are shown in Fig. 8. Multiple rules

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 20. Publication date: January 2025.

20:16 Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J. Summers, and Peter Müller

SkipAx

selfFraming(𝑃)
Δ ⊢ [𝑃] skip [𝑃]

InhaleAx

selfFraming(𝑃) frames(𝐴, 𝑃)
Δ ⊢ [𝑃] inhale 𝐴 [𝑃 ∗𝐴]

ExhaleAx

selfFraming(𝑃) 𝑃 |= 𝑄 ∗𝐴 selfFraming(𝑄)
Δ ⊢ [𝑃] exhale 𝐴 [𝑄]

IfAx

selfFraming(𝑃) frames(𝑃,𝑏) Δ ⊢ [𝑃 ∧ 𝑏] 𝐶1 [𝐵1] Δ ⊢ [𝑃 ∧ ¬𝑏] 𝐶2 [𝐵2]
Δ ⊢ [𝑃] if(𝑏) {𝐶1} else {𝐶2} [𝐵1 ∨ 𝐵2]

HavocAx

selfFraming(𝑃) Δ(𝑥) = 𝜏

Δ ⊢ [𝑃] havoc 𝑥 [∃𝑥 ∈ 𝜏 . 𝑃]

SeqAx

Δ ⊢ [𝑃] 𝐶1 [𝑅] Δ ⊢ [𝑅] 𝐶2 [𝑄]
Δ ⊢ [𝑃] 𝐶1;𝐶2 [𝑄]

AssignAx

selfFraming(𝑃) frames(𝑃, 𝑒)
Δ ⊢ [𝑃] 𝑥 := 𝑒 [∃𝑣. 𝑃 [𝑣/𝑥] ∧ 𝑥 = 𝑒 [𝑣/𝑥]]

Fig. 8. Axiomatic semantic rules.

have side-conditions requiring the preconditions and postconditions to be self-framing, ensuring

that if we have Δ ⊢ [𝑃] 𝐶 [𝑄], 𝑃 and 𝑄 are self-framing.

As explained in §2.4, our operational and axiomatic semantics are equivalent. The soundness

property expressed in Thm. 2 (in §2.4) allows one to bridge the gap between a valid CoreIVL program

(according to Def. 1) and the front-end program logic. The proof of Thm. 2 is not straightforward.

In particular, our proof explicitly tracks the angelic choices made based on the sequence of past

states of each execution, as shown by the following lemma, which implies Thm. 2. Let ≪𝐴≫ ≜
{𝜔 ′ | stabilize(𝜔 ′) ∈ 𝐴} for a set of states 𝐴.

Lemma 2. Given a set Ω ∈ P(Σ∗ × Σ) of lists of past states paired with current states, a CoreIVL
statement 𝐶 , and a function S mapping elements from Ω to sets of states, if for all (𝑙, 𝜔) ∈ Ω we have

(1) stable(𝜔), and
(2) ⟨𝐶,𝜔⟩ →Δ S(𝑙, 𝜔),

then Δ ⊢ [≪{𝜔 | (𝑙, 𝜔) ∈ Ω}≫] 𝐶 [≪⋃
(𝑙,𝜔) ∈Ω S(𝑙, 𝜔)≫].

An element ([𝜔0, . . . , 𝜔𝑛], 𝜔𝑛+1) ∈ Ω represents all the intermediate states of one execution up

to now, which we use to resolve the future angelism. The function S maps each such element to a

set of states that can be reached from 𝜔𝑛+1 by executing 𝐶 . Intuitively, the precondition collects all

the current states from Ω, and the postcondition collects all the states they can reach by executing

𝐶 . The proof proceeds by structural induction over the statement 𝐶 .

The reason for tracking sequences of past states. The reader might be wondering why

Lemma 2 keeps track of the list of all past states, instead of only keeping track of the current

state. The reason is that only keeping track of the current state would not allow us to prove

the inductive case for sequential composition. To understand why, assume that Ω is instead a

set of single states, and S is a function from single states to a set of states. Consider proving the

inductive case for the sequential composition, i.e., for 𝐶 ≜ (𝐶1;𝐶2). Assume that, in this scenario,

we are given Ω = {𝜔𝐴, 𝜔𝐵}, and that S is such that S(𝜔𝐴) = {𝜔 ′
𝐴
} and S(𝜔𝐵) = {𝜔 ′

𝐵
}. From

assumption (2) in Lemma 2, we know that ⟨𝐶1;𝐶2, 𝜔𝐴⟩ →Δ {𝜔 ′
𝐴
} and ⟨𝐶1;𝐶2, 𝜔𝐵⟩ →Δ {𝜔 ′

𝐵
} hold.

It might be the case that executing 𝐶1 in either 𝜔𝐴 or 𝜔𝐵 yields the same set of states {𝜔 ′}, i.e.,
⟨𝐶1, 𝜔𝐴⟩ →Δ {𝜔 ′} and ⟨𝐶1, 𝜔𝐵⟩ →Δ {𝜔 ′}, but that the angelic non-determinism when executing

𝐶2 in state 𝜔 ′
was resolved differently in both executions, leading to 𝜔 ′

𝐴
in the execution from 𝜔𝐴

and 𝜔 ′
𝐵
in the execution from 𝜔𝐵 . More concisely, the executions of𝐶1;𝐶2 in 𝜔𝐴 and 𝜔𝐵 might have

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 20. Publication date: January 2025.

Formal Foundations for Translational Separation Logic Verifiers 20:17

been constructed as follows:

⟨𝐶1, 𝜔𝐴⟩ →Δ {𝜔 ′} ∧ ⟨𝐶2, 𝜔
′⟩ →Δ {𝜔 ′

𝐴} ⇒ ⟨𝐶1;𝐶2, 𝜔𝐴⟩ →Δ {𝜔 ′
𝐴}

⟨𝐶1, 𝜔𝐵⟩ →Δ {𝜔 ′} ∧ ⟨𝐶2, 𝜔
′⟩ →Δ {𝜔 ′

𝐵} ⇒ ⟨𝐶1;𝐶2, 𝜔𝐵⟩ →Δ {𝜔 ′
𝐵}

In this case, our intermediate set of states between 𝐶1 and 𝐶2 is Ω ≜ {𝜔 ′}. To apply our induction

hypothesis for 𝐶2, we need to find a function S2 that maps 𝜔 ′
to both {𝜔 ′

𝐴
} and {𝜔 ′

𝐵
}, as required

by the assumption (2) in the lemma, which is not possible.

To solve this issue, we explicitly keep track of all past states. In this way, our intermediate set

of states for the previous example is Ω ≜ {([𝜔𝐴], 𝜔 ′), ([𝜔𝐵], 𝜔 ′)}, which allows us to define a

function S2 such that S2 ([𝜔𝐴], 𝜔 ′) = {𝜔 ′
𝐴
} and S2 ([𝜔𝐵], 𝜔 ′) = {𝜔 ′

𝐵
}, allowing us to apply our

induction hypothesis and prove the sequential composition case.

Completeness. To show that our operational and axiomatic semantics are equivalent, we also

prove the following completeness property (whose proof is less involved than for soundness):

Theorem 5 (Completeness). Assume Δ ⊢ [𝑃] 𝐶 [𝑄], and let 𝜔 ∈ 𝑃 such that stable(𝜔). Then there
exists 𝑆 such that ⟨𝐶,𝜔⟩ →Δ 𝑆 and 𝑆 ⊆ 𝑄 .

3.4 ViperCore: Instantiating CoreIVL with Viper
To show the practical usefulness of CoreIVL, we instantiated it for the Viper language. We call

this instantiation ViperCore, and we use it in §4 and §5. To instantiate the framework presented

in this section, one needs (1) an IDF algebra, (2) a type of custom statements 𝐶′
, (3) operational

and axiomatic semantic rules for each custom statement, and (4) proofs that those operational and

axiomatic semantic rules are compatible with our framework (i.e., soundness and completeness

for the custom semantic rules, and a proof that the operational semantics of custom statements

preserves stability).

We instantiate (1) with the IDF algebra ΣIDF defined in §3.1, where the set 𝐿 of heap locations is

the set of pairs of a reference and a field (represented by a string). For (2), we add field assignments

as 𝐶′ F (𝑒1 .𝑓 := 𝑒2), where 𝑒1 and 𝑒2 are semantic expressions that evaluate to a reference and a

value, respectively, and 𝑓 is a field. The field assignment 𝑒1.𝑓 := 𝑒2 is deterministic. In an initial state

(𝜎, (ℎ, 𝜋)), it reduces to the singleton set {(𝜎, (ℎ[(𝑟, 𝑓) ↦→ 𝑣], 𝜋))} if 𝑒1 evaluates to a reference 𝑟 ,
𝑒2 evaluates to a value 𝑣 , and 𝜋 ((𝑟, 𝑓)) = 1. This semantics is reflected both in its corresponding

operational and axiomatic semantic rules (3), and the associated proofs (4) are straightforward.

Moreover, we have also connected the deep embedding of the Viper language developed by

Parthasarathy et al. [2024] (which we leverage in the next section) to ViperCore, by defining a

function ↓𝐶 that converts their syntactic statements, expressions and assertions into semantic
ViperCore statements, expressions and assertions.

4 Back-End Soundness
In this section, we show how our framework enables formalizing the soundness of different back-end

verifiers. We prove the soundness of two fundamentally different verification algorithms commonly

used in practice: symbolic execution and verification condition generation. We connect both to

the same instantiation of CoreIVL, namely ViperCore introduced in §3.4. This demonstrates that

CoreIVL’s semantics can accommodate fundamentally different verification algorithms.

Symbolic execution is a common kind of verification algorithm used in separation logic-based

verifiers [Berdine et al. 2005b; Jacobs et al. 2011; Santos et al. 2020]. §4.1 introduces a symbolic exe-

cution back-end for ViperCore. Its design follows Viper’s symbolic execution back-end [Schwerhoff

2016], but it is formalized as a function inside Isabelle/HOL. The main result of §4.1 is a soundness

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 20. Publication date: January 2025.

20:18 Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J. Summers, and Peter Müller

𝜎 : SymState ::= {store : Var ⇀ SymExpr, pc : SymExpr, heap : List(Chunk)}
𝑡 ::= 𝑥 | 𝑙 | ⊙ 𝑡 | 𝑡 ⊕ 𝑡 where ⊙ ∈ {¬,−, . . .} and ⊕ ∈ {∧,∨,=, +,−, . . .}

𝑐 : Chunk ::= {recv : SymExpr, field : FieldName, perm : SymExpr, val : SymExpr}

sexec 𝜎 𝐶 𝐾 ≜

sproduce 𝜎 𝐴 𝐾 if 𝐶 = inhale 𝐴

sconsume 𝜎 𝐴 (𝜆𝜎. scleanup 𝜎 𝐾) if 𝐶 = exhale 𝐴

sexp 𝜎 𝑒 (𝜆𝜎 𝑡 . sexec pc_add(𝜎, 𝑡) 𝐶1 𝐾 if 𝐶 = (if 𝑒 then 𝐶1 else 𝐶2)
∧ sexec pc_add(𝜎,¬𝑡) 𝐶2 𝐾)

. . .

sproduce 𝜎 (acc(𝑒𝑟 .𝑓 , 𝑒𝑝)) 𝐾 ≜ sexp 𝜎 𝑒𝑟 (𝜆𝜎 𝑡𝑟 . sexp 𝜎 𝑒𝑝 (𝜆𝜎 𝑡𝑝 . chunk_add 𝜎 {𝑡𝑟 , 𝑓 , 𝑡𝑝 , fresh} 𝐾))
sconsume 𝜎 (acc(𝑒𝑟 .𝑓 , _)) 𝐾 ≜ sexp 𝜎 𝑒𝑟 (𝜆𝜎 𝑡𝑟 . extract 𝜎 𝑡𝑟 𝑓 _ (𝜆𝜎 𝑐. chunk_add 𝜎 𝑐{perm := 𝑐.perm/2}𝐾))

Fig. 9. Symbolic states and excerpts of sexec, sproduce, and sconsume. The full definition is in the extended

version [Dardinier et al. 2024a, Section A].

proof of this symbolic execution against the operational semantics of ViperCore, showing how

CoreIVL is general enough to justify widely-used symbolic execution algorithms.

In §4.2 we connect ViperCore to the formalization by Parthasarathy et al. [2024] of Viper’s

verification condition generation (VCG) back-end, which translates an input Viper program to

Boogie.
8
This formalization includes a formal operational semantics of Viper that we call VCGSem.

Unlike ViperCore, which is designed to capture the verification algorithms of multiple back-ends,

VCGSem is specific to the verification algorithm of the VCG back-end. For example, VCGSem uses

a total heap (i.e., all possible locations on the heap store a value), while ViperCore is based on a

partial heap (which is important to capture existing symbolic execution algorithms). Moreover,

VCGSem uses (constrained) demonic choice when exhaling wildcard permissions, while ViperCore

uses angelic choice. Despite these differences, we show that ViperCore’s (and thus also CoreIVL’s)

operational semantics is general enough to capture VCGSem, which embodies Viper’s VCG back-

end.

We have chosen these two back-ends since they implement very different proof search algorithms:

The symbolic execution algorithm manipulates a symbolic state including a list of heap chunks,

while the VCG back-end maps to Boogie code whose operations are embodied by VCGSem, a

big-step operational semantics with a total heap. These back-ends show CoreIVL’s generality for

justifying multiple common verification algorithms. A key aspect that enables this generality is

CoreIVL’s use of angelic choice. Concretely, the two back-ends use different algorithms for exhaling

wildcard permissions (the symbolic execution halves the permission of one heap chunk while

VCGSem demonically chooses a suitably-constrained permission amount). Yet, CoreIVL can capture

both algorithms thanks to its use of angelic choice.

4.1 Symbolic Execution
We formalized a symbolic execution back-end for ViperCore in Isabelle/HOL based on the descrip-

tion of Viper’s back-end by Schwerhoff [2016] while also taking inspiration from the (on paper)

formalization of symbolic execution by Zimmerman et al. [2024].

8
This work provides a proof-producing version of Viper’s VCG back-end that generates a certificate in Isabelle for each

successful verification, but not a general soundness proof.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 20. Publication date: January 2025.

Formal Foundations for Translational Separation Logic Verifiers 20:19

Symbolic states. The symbolic state tracked during verification is defined in Fig. 9. It consists of

the following components:
9
(1) A symbolic store (store) mapping variables to symbolic expressions,

(2) a path condition (pc)—which is a symbolic expression tracking logical facts that hold in the

current branch of the program—, and (3) a symbolic heap (heap) given by a list of heap chunks.

Symbolic expressions 𝑡 consist of symbolic variables 𝑥 , literals 𝑙 (e.g., for concrete integers, booleans
or permission amounts), unary operations ⊙ 𝑡 , and binary operations 𝑡 ⊕ 𝑡 . We define a function

pc_add(𝜎, 𝑡) that adds the (boolean) symbolic expression 𝑡 to the path condition of 𝜎 .

The most crucial part of symbolic states is the symbolic heap. As is common [Berdine et al.

2005a; Jacobs et al. 2011; Schwerhoff 2016], we represent the symbolic heap as a list of (heap)

chunks. Conceptually, each heap chunk corresponds to an acc(𝑒𝑟 .𝑓 , 𝑒𝑝) resource, which we call an

acc-resource in this section, together with an associated value. Concretely, a chunk 𝑐 is a record

with four fields, as shown in Fig. 9. recv and field describe the heap location that the chunk belongs

to, perm describes the permission of the chunk, and val gives the (symbolic) value of the heap

location. A symbolic heap is a list of chunks. Note that this list can contain multiple chunks for the

same location (cf. state consolidation, described shortly).

Defining the symbolic execution. Our symbolic execution is defined via the sexec function

for symbolically executing a statement 𝐶 . It delegates calls to: the sproduce function (for inhaling

an assertion 𝐴), the sconsume function (for exhaling an assertion 𝐴), the scleanup function (for

removing empty heap chunks after exhaling an assertion), and the sexp function (for symbolically

evaluating an expression 𝑒). Each of these functions are formalized as functions in Isabelle/HOL

and can be executed inside the prover to verify a concrete program. The parts of these functions

relevant to this chapter are shown in Fig. 9. The full definition can be found in the extended

version [Dardinier et al. 2024a, Section A]. Following Schwerhoff [2016], these functions are written

in continuation passing style with continuation 𝐾 . This allows us to easily split the verification

in multiple branches as shown e.g., by the if-case of sexec. We now highlight the most important

aspects of the symbolic execution.

Representing different state consolidation algorithms. After inhaling an acc-resource and

adding it to the list of heap chunks, the symbolic execution might try to merge chunks for the same

location and deduce additional information (e.g., that for chunks of the same location their permis-

sions sum to at most 1 and their values match). This process, called state consolidation [Schwerhoff

2016], is incorporated into the chunk_add function, used to model inhaling an acc-resource during

sproduce:

chunk_add 𝜎 𝑐 𝐾 ≜ consolidate 𝜎{heap := 𝑐 :: 𝜎.heap} 𝐾
Since there are many possible ways to implement state consolidation [Schwerhoff 2016] (e.g.,
merging chunks eagerly or lazily), we do not prescribe a specific implementation of the consolidate

function, but instead characterize consolidate semantically:10

consolidate 𝜎 𝐾 ≜ ∀𝜔. 𝜔 ∼sym 𝜎 ⇒ ∃𝜎 ′ . 𝜔 ∼sym 𝜎 ′ ∧ 𝐾 𝜎 ′

Concretely, when executing consolidate, one is given a ViperCore state 𝜔 related to the current

symbolic execution state 𝜎 (using the ∼sym relation) and one can pick an arbitrary new state 𝜎 ′ as
long as it is related to the same ViperCore state 𝜔 . Intuitively, 𝜔 ∼sym 𝜎 is defined by stating that

there exists a mapping from symbolic variables to concrete values, which can be simply extended

to a mapping from 𝜎 to 𝜔 . The existential quantifier allows us to represent many different state

consolidation algorithms. However, this generality also means that consolidate cannot be executed

9
For simplicity, we omit components for generating fresh symbolic variables and tracking type information.

10
The actual definition of consolidate is slightly different to decouple the definition of the symbolic execution and ViperCore.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 20. Publication date: January 2025.

20:20 Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J. Summers, and Peter Müller

directly. Instead, one can provide a concrete algorithm and prove it sound against consolidate (our

implementation uses the trivial algorithm that does not consolidate at all). However, the soundness

proof of our symbolic execution works for any valid consolidation algorithm.

Soundness. We prove sexec sound against the operational semantics of ViperCore:
11

Theorem 6 (Soundness of sexec). For each (syntactic) statement 𝐶 , ViperCore state 𝜔 and symbolic
state 𝜎 related via 𝜔 ∼sym 𝜎 , if sexec 𝜎 𝐶 𝐾 evaluates to true, then ↓𝐶 is correct for the initial state 𝜔 .

↓𝐶 is the compilation function from syntactic statements to ViperCore statements described

in §3.4. The operational semantics of CoreIVL is well-suited for this soundness proof since the

symbolic execution also traverses the statements in an operational way, and it is straightforward to

relate one ViperCore state to one symbolic execution state via 𝜔 ∼sym 𝜎 .

Soundness of exhaling wildcards via angelic choice. Let us highlight the most interesting

part of this soundness proof: exhaling wildcards. Exhaling assertions is handled by the sconsume

function in Fig. 9. When exhaling an acc-resource with a wildcard permission amount, sconsume

finds and removes a matching chunk from the symbolic heap using the extract function.
12
Then it

adds the chunk back with its permission amount halved. Representing this algorithm directly in

ViperCore would be impossible since there might be multiple heap chunks for the same location

and thus the amount of permissions removed depends on the structure of the symbolic heap.

This structure is not visible in ViperCore, which tracks only a single concrete heap. However,

we can still prove this algorithm sound against ViperCore. The angelic choice in the operational

semantics allows us to pick any non-zero permission amount to remove when constructing the

ViperCore execution, in particular, the amount that was chosen by the execution of sexec. This

shows how angelic choice gives CoreIVL the flexibility to be used in the soundness proof for

different verification algorithms, even some that cannot be represented directly in the CoreIVL.

4.2 Verification Condition Generation
We now describe how we connect the ViperCore instantiation of CoreIVL to the VCGSem for-

malization of Viper’s VCG introduced by Parthasarathy et al. [2024]. VCGSem is expressed as an

operational big-step semantics ⟨𝐶, 𝜎𝑡 ⟩ →VCG 𝑟 . Here, 𝐶 is a (deeply embedded) Viper statement,

𝜎𝑡 the initial VCGSem state consisting of a total heap (mapping all locations to values) and a

permission mask (mapping all locations to permission amounts), and 𝑟 is an outcome, which can

be either failure F, magic M, or a normal outcome N(𝜎 ′𝑡).13 The key result of Parthasarathy et al.

[2024] is that for each successful verification run of the VCG algorithm, they provide a proof that

the VCGSem execution does not fail: ¬(⟨𝐶, 𝜎𝑡 ⟩ →VCG F).
What makes the connection between VCGSem and ViperCore interesting is that VCGSem makes

various design choices that are specific to the Viper back-end that it was designed to represent. For

instance, VCGSem defines the exhale of a wildcard to demonically remove a non-zero permission

amount smaller than the currently held amount, which precisely mimics Viper’s VCG. Morever,

VCGSem chooses a total heap representation for the Viper states, where all locations store a value
(VCGSem checks that only locations with non-zero permission are accessed), because this is how

Viper’s VCG back-end represents the heap. In contrast, ViperCore uses a more standard partial

heap introduced in §3.1. By proving VCGSem sound against ViperCore, we show that CoreIVL as a

general semantics for verification algorithms can capture this preexisting verification algorithm.

11
We omit side-conditions about typing to avoid clutter.

12
Similar to consolidate, extract is characterized semantically and we provide a default implementation of extract that

queries Isabelle/HOL’s solvers to find the first matching chunk.

13
We omit typing contexts in this section to avoid clutter.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 20. Publication date: January 2025.

Formal Foundations for Translational Separation Logic Verifiers 20:21

The most significant challenge in the proof connecting VCGSem and ViperCore is the difference in

their heap representations. We explain this challenge and our solutions next.

Total vs. partial heap. The seemingly superficial difference between VCGSem’s total heap and

ViperCore’s partial heap has far-reaching ramifications: fundamentally it means that a ViperCore

execution does not correspond to a single VCGSem execution but a set of VCGSem executions.

The reason for this mismatch is in the semantics of exhale. When exhaling all permissions to

a location and later inhaling permissions to this location again, a Viper semantics needs to pick

a fresh value for the location such that one cannot unsoundly assume that the value remained

unchanged between the inhale and the exhale. This requirement is naturally expressed with the

partial heap of ViperCore: when exhaling all permissions to a location in ViperCore, the location

is removed from the partial heap and when new permissions for the location are inhaled, it gets

re-added with a (non-deterministically chosen) fresh value. However, since VCGSem uses a total

heap, it cannot remove locations. Instead, VCGSem non-deterministically assigns these locations

new values after the exhale and leaves the heap unchanged in the inhale. Consequently, VCGSem
and ViperCore apply (demonic) non-deterministic choice at different program points: VCGSem

already picks a fresh value during the exhale, while ViperCore chooses it during the inhale. To
address this mismatch

14
, we relate a ViperCore execution not to a single VCGSem execution but to

a set of VCGSem executions that represent all possible choices for the demonic non-determinism.

Soundness. We prove the following soundness statement for VCGSem:
15

Theorem 7 (Soundness of VCGSem). For all (syntactic) statements 𝐶 and ViperCore states 𝜔 , if we
have ¬(⟨𝐶, 𝜎𝑡 ⟩ →VCG F) for all VCGSem states 𝜎𝑡 such that 𝜔 ∼VCG 𝜎𝑡 , then ↓𝐶 is correct for the
state 𝜔 .

Intuitively, this theorem allows us to transform a proof about a successful verification by the VCG

back-end into a verification proof according to the ViperCore semantics. Note that the theorem

relates a single ViperCore execution to a set of VCGSem executions since the relation 𝜔 ∼VCG 𝜎𝑡
relates a ViperCore state 𝜔 to multiple VCGSem states 𝜎𝑡 representing the different choices for the

demonic non-determinism. (Otherwise, 𝜔 ∼VCG 𝜎𝑡 is similar to 𝜔 ∼sym 𝜎 from §4.1, but adapted for

the different notion of states used by VCGSem.) In fact, to prove Thm. 7 via induction, we need to

prove a stronger lemma that also requires us to construct all possible VCGSem executions for the

statement corresponding to the ViperCore execution.

Summary. We have demonstrated in this section how CoreIVL’s operational semantics helps us

solve Challenge 2, by being general enough to capture the two predominant verification algorithms

back-ends implemented in practice: our new formalization of symbolic execution in §4.1 and the

preexisting formalization of Viper’s VCG back-end [Parthasarathy et al. 2024] in §4.2.

5 Front-End Soundness
In this section, we show how our axiomatic semantics addresses Challenge 3 from §1, by formalizing

and proving sound a concrete front-end translation into ViperCore for a parallel programming

language ParImp with loops, shared memory, and dynamic memory allocation and deallocation.

We define the language and an IDF-based program logic in §5.1. In §5.2, we define the translation

of annotated ParImp programs into ViperCore and prove it sound using the axiomatic semantics

14
The mismatch could also be addressed by changing VCGSem to assign a fresh value during inhale. However, our goal is

to capture the verification algorithms of existing back-ends.

15
For readability, we omit some technical assumptions about stability of 𝜔 and well-typedness.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 20. Publication date: January 2025.

20:22 Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J. Summers, and Peter Müller

Frame

Δ ⊢CSL [𝑃] 𝐶 [𝑄] selfFraming(𝑃) selfFraming(𝐹) fv (𝐹) ∩mod (𝐶) = ∅
Δ ⊢CSL [𝑃 ∗ 𝐹] 𝐶 [𝑄 ∗ 𝐹]

Par

mod (𝐶𝑙) ∩ (fv (𝐶𝑟) ∪ fv (𝑄𝑟)) = ∅ mod (𝐶𝑟) ∩ (fv (𝐶𝑙) ∪ fv (𝑄𝑙)) = ∅
Δ ⊢CSL [𝑃𝑙] 𝐶𝑙 [𝑄𝑙] Δ ⊢CSL [𝑃𝑟] 𝐶𝑟 [𝑄𝑟] selfFraming(𝑃𝑙) selfFraming(𝑃𝑟)

Δ ⊢CSL [𝑃𝑙 ∗ 𝑃𝑟] 𝐶𝑙 | | 𝐶𝑟 [𝑄𝑙 ∗𝑄𝑟]

Seq

Δ ⊢CSL [𝑃] 𝐶1 [𝑅] Δ ⊢CSL [𝑅] 𝐶2 [𝑄]
Δ ⊢CSL [𝑃] 𝐶1;𝐶2 [𝑄]

Cons

Δ ⊢CSL [𝑃 ′] 𝐶 [𝑄 ′] 𝑃 |= 𝑃 ′ 𝑄 ′ |= 𝑄

Δ ⊢CSL [𝑃] 𝐶 [𝑄]

If

Δ ⊢CSL [𝑃 ∧ 𝑏] 𝐶1 [𝑄] Δ ⊢CSL [𝑃 ∧ ¬𝑏] 𝐶2 [𝑄]
Δ ⊢CSL [𝑃] if(𝑏) {𝐶1} else {𝐶2} [𝑄]

Alloc

𝑟 ∉ fv (𝑒)
Δ ⊢CSL [⊤] r := alloc(e) [acc(r.v) ∗ r.v = e]

While

Δ ⊢CSL [𝐼 ∧ 𝑏] 𝐶 [𝐼]
Δ ⊢CSL [𝐼] while (𝑏) {𝐶 } [𝐼 ∧ ¬𝑏]

Load

𝑃 |= acc(r.v, _)
Δ ⊢CSL [𝑃] x := r.v [∃𝑢. 𝑃 [𝑢/𝑥] ∗ x = r.v]

Store

Δ ⊢CSL [acc(r.v)] r.v := e [acc(r.v) ∗ r.v = e]
Free

Δ ⊢CSL [acc(q.v)] free(q) [⊤]

Assign

Δ ⊢CSL [𝑃 [𝑥/𝑒]] x := e [𝑃]
Skip

Δ ⊢CSL [𝑃] skip [𝑃]

Fig. 10. Inference rules of our IDF-based CSL.

of ViperCore. While the soundness proof is specific to this translation, it highlights key reusable

ingredients and demonstrates how our axiomatic semantics for CoreIVL makes such proofs simple.

5.1 An IDF-Based Concurrent Separation Logic
Our parallel programming language ParImp is defined as

𝐶 F 𝑥 := 𝑒 | 𝑥 := 𝑟 .𝑣 | 𝑟 .𝑣 := 𝑒 | 𝑟 := alloc(𝑒) | free(𝑟) | 𝐶 ;𝐶 | if(𝑏) {𝐶 } else {𝐶 } | 𝐶 | |𝐶 | while (𝑏) {𝐶 } | skip

𝐶 ranges over ParImp statements, 𝑒 over arithmetic expressions, 𝑏 over boolean expressions, 𝑥 over

integer variables, 𝑟 over reference variables, and 𝑣 is a fixed field. We consider objects with a unique

field 𝑣 for simplicity; extending our work to support multiple fields is straightforward. The statement

𝑥 := 𝑟 .𝑣 loads the value of the field 𝑣 of the reference 𝑟 into the variable 𝑥 , while 𝑟 .𝑣 := 𝑒 stores the

value of the expression 𝑒 in the field 𝑣 of the reference 𝑟 . The statement 𝑟 := alloc(𝑒) allocates a
new reference with the value of the expression 𝑒 for the field 𝑣 , and free(𝑟) deallocates the reference
𝑟 . The other statements are standard. We use a standard small-step semantics ⟨𝐶, 𝜎⟩ → ⟨𝐶′, 𝜎 ′⟩
where 𝜎 and 𝜎 ′ are pairs of a store (a partial mapping from variables to values) and a heap (a partial

mapping from pairs of an address and a field to values).

An IDF-based program logic for ParImp. We build and prove sound a program logic analogous

to CSL for ParImp based on our IDF state model ΣIDF (defined in §3.1). Our framework also supports

standard separation logic, but connecting an IDF logic to ViperCore allows us to focus on the most

interesting aspects of the soundness proof.

Our program logic judgment is written Δ ⊢CSL [𝑃] 𝐶 [𝑄], where 𝑃 and𝑄 are ViperCore assertions

(i.e., sets of IDF states). The most important rules of our program logic are given in Fig. 10. The

rules Seq, Cons, If, While, Free, Assign, and Skip, are standard. The rules Alloc, Store, Load, Frame, and

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 20. Publication date: January 2025.

Formal Foundations for Translational Separation Logic Verifiers 20:23

J𝑟 := alloc(𝑒)K ≜ ((havoc 𝑟 ; inhale acc(𝑟 .𝑣) ∗ 𝑟 .𝑣 = 𝑒),∅)
Jfree(𝑟)K ≜ (exhale acc(𝑟 .𝑣),∅)
J𝐶1;𝐶2K ≜ ((J𝐶1K.1; J𝐶2K.1), (J𝐶1K.2 ∪ J𝐶2K.2))
Jif(𝑏) {𝐶1} else {𝐶2}K ≜ (if(𝑏) {J𝐶1K.1} else {J𝐶2K.1}), (J𝐶1K.2 ∪ J𝐶2K.2))

JskipK ≜ (skip,∅)
J𝑥 := 𝑒K ≜ (𝑥 := 𝑒,∅)
J𝑟 .𝑣 := 𝑒K ≜ (𝑟 .𝑣 := 𝑒,∅)
J𝑥 := 𝑟 .𝑣K ≜ (𝑥 := 𝑟 .𝑣,∅)

J𝐶𝑙 | | 𝐶𝑟 K ≜ ((exhale 𝑃𝑙 ∗ 𝑃𝑟 ; havoc mod (𝐶𝑙) ∪mod (𝐶𝑟) ; inhale 𝑄𝑙 ∗𝑄𝑟),
{inhale 𝑃𝑙 ; J𝐶𝑙 K.1; exhale 𝑄𝑙 } ∪ {inhale 𝑃𝑟 ; J𝐶𝑟 K.1; exhale 𝑄𝑟 } ∪ J𝐶𝑙 K.2 ∪ J𝐶𝑟 K.2)

Jwhile (𝑏) {𝐶 }K ≜ ((exhale 𝐼 ; havoc mod (𝐶) ; inhale 𝐼 ∧ ¬𝑏),
{inhale 𝐼 ∧ 𝑏; J𝐶K.1; exhale 𝐼 } ∪ J𝐶K.2)

Fig. 11. Front-end translation from ParImp to ViperCore. The translation function J_K takes as input an
annotated ParImp statement𝐶 and returns a pair of a ViperCore statement and a set of ViperCore statements.

We write J𝐶K.1 and J𝐶K.2 to denote its first and second components, respectively. Assertions 𝑃𝑙 , 𝑃𝑟 , 𝑄𝑙 , and

𝑄𝑟 for the parallel composition and 𝐼 for the while loop are annotations provided by the user, which are all

required to be self-framing. The notation havoc 𝑉 , where 𝑉 is a set of variables {𝑥1, . . . , 𝑥𝑛}, is a shorthand
for havoc 𝑥1; . . . ; havoc 𝑥𝑛 .

Par are analogous to the standard CSL rules, but adapted to our IDF setting. In particular, the rule

Frame requires the precondition 𝑃 and the frame 𝐹 to be self-framing. Without this restriction,

one could for example use 𝑃 ≜ (acc(r.v)) and 𝐹 ≜ (r.v = 5) to unsoundly derive the invalid

triple Δ ⊢CSL [(acc(r.v)) ∗ (r.v = 5)] r.v := 3 [(acc(r.v) ∗ r.v = 3) ∗ (r.v = 5)] (whose
postcondition is not satisfiable) using the rules Frame and Store. Similarly, the rule Par requires the

preconditions 𝑃𝑙 and 𝑃𝑟 to be self-framing. Finally, the rule Load allows arbitrary preconditions 𝑃 ,

as long as 𝑃 asserts some permission to read r.v.
We have proved in Isabelle the soundness of this IDF-based program logic, which we state as

follows (the proof of this theorem is an adaption of the proof from Vafeiadis [2011] to our IDF

setting):

Theorem 8 (Adequacy). Let 𝐶 be a well-typed program, and 𝑃 and 𝑄 be predicates on ParImp states
(i.e., without permissions). If the triple Δ ⊢CSL [𝑃] 𝐶 [𝑄] holds, and if 𝜎 is a well-typed state such that
𝑃 (𝜎), then executing 𝐶 in the state 𝜎 will not abort nor encounter any data race, and for all 𝜎 ′ such
that ⟨𝐶, 𝜎⟩ →∗ ⟨skip, 𝜎 ′⟩, we have 𝑄 (𝜎 ′).

5.2 A Sound Front-End Translation
Building on the previously-defined IDF-based program logic, we define a standard front-end

translation from ParImp programs with annotations into ViperCore programs, shown in Fig. 11.

This translation was illustrated in the example in Fig. 3 from §2. The translation function J_K takes
as input an annotated ParImp statement 𝐶 and yields a pair of a ViperCore statement and a set of
ViperCore statements. The first component, written J𝐶K.1, corresponds to the main translation of

𝐶 , while the second component, written J𝐶K.2, corresponds to the set of auxiliary Viper methods

generated by the translation along the way. Auxiliary methods are generated for loops and parallel

compositions only. Methods l and r in Fig. 3 are examples of such auxiliary methods.

The translation of field and variable assignments is straightforward. The translation of sequential

composition and conditional statements is also straightforward since they use the corresponding

sequential composition and conditional statements of ViperCore, and collect the auxiliary methods

generated by the translation of the sub-statements. The translation of allocation and deallocation

statements corresponds to the rules Alloc and Free from Fig. 10.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 20. Publication date: January 2025.

20:24 Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J. Summers, and Peter Müller

The translation of parallel composition and while loops is more involved, but they follow the

same pattern. First, the premises of the relevant rules (Par and While) are checked by generating

auxiliary methods, which first inhale the relevant precondition, then translate the relevant state-

ment, and finally exhale the relevant postcondition. For example, the premise Δ ⊢CSL [𝐼 ∧ 𝑏] 𝐶 [𝐼]
of the rule While is checked by generating the auxiliary method inhale 𝐼 ∧ 𝑏; J𝐶K.1; exhale 𝐼 .
We call this pattern the inhale-translation-exhale pattern. Then, the main translation follows

the conclusion of the rule, by exhaling the precondition, havocking the modified variables, and

inhaling the postcondition. For example, the main translation of the loop while (𝑏) {𝐶} is

(exhale 𝐼 ; havoc mod (𝐶); inhale 𝐼 ∧¬𝑏), reflecting the conclusion Δ ⊢CSL [𝐼] while (𝑏) {𝐶} [𝐼 ∧
¬𝑏] of the ruleWhile. We call this pattern, which we have already seen in §2.4, the exhale-havoc-
inhale pattern. Those two patterns are not specific to our translation, but are general patterns that

can be found in many front-end translations.

Soundness. We assume that the ParImp statement𝐶 wewant to verify is annotated with a precon-

dition 𝑃 and a postcondition𝑄 . In this case, we add inhale 𝑃 before the main translation (as we did

in Fig. 3), and exhale 𝑄 afterwards, following the inhale-translation-exhale pattern. Our complete

front-end translation yields the set of ViperCore statements {inhale 𝑃 ; J𝐶K.1; exhale 𝑄} ∪ J𝐶K.2.
Our translation is sound, as stated in the following theorem. We say that a ViperCore statement 𝐶𝑣

is valid w.r.t. the axiomatic semantics, which we write valid𝐴𝑥 (𝐶𝑣), iff ∃𝐵. Δ ⊢ [⊤] 𝐶𝑉 [𝐵].

Theorem 9 (Soundness of the front-end translation). Let 𝐶 be a front-end statement, and 𝑃 and
𝑄 be assertions. If (1) the axiomatic semantics triple Δ ⊢ [𝑃] J𝐶K.1 [𝑄] holds, and (2) all ViperCore
statements in J𝐶K.2 are valid w.r.t. the axiomatic semantics, then Δ ⊢CSL [𝑃] 𝐶 [𝑄] holds.

To prove this theorem, we show that the translation of every front-end statement 𝐶 is backward-
convertible (or convertible in short), which we write as convertible(C). Intuitively, this means that if

the translation of the front-end statement into ViperCore is valid (including all auxiliary ViperCore

methods) then we can convert the axiomatic semantics triple Δ ⊢CSL [𝑃] J𝐶K.1 [𝑄] into a front-end
triple Δ ⊢CSL [𝑃] 𝐶 [𝑄]. We formally express this property as follows:

convertible(C) ≜
(
∀𝑃,𝑄. ((∀𝐶𝑣 ∈ J𝐶K.2. valid𝐴𝑥 (𝐶𝑣)) ∧ Δ ⊢ [𝑃] J𝐶K.1 [𝑄]) ⇒ Δ ⊢CSL [𝑃] 𝐶 [𝑄]

)
This convertibility property combined with the following lemma allows us to prove Thm. 9:

Lemma 3 (Inhale-translation-exhale pattern). If (1) convertible(C) holds, (2) all auxiliary methods
from J𝐶K.2 are valid w.r.t. the axiomatic semantics, and (3) Δ ⊢ [𝑃] inhale 𝐴; J𝐶K.1; exhale 𝐵 [𝑄]
holds, then Δ ⊢CSL [𝑃 ∗𝐴] 𝐶 [𝐵 ∗𝑄] holds.

Proof. By inverting the rules SeqAx, InhaleAx, and ExhaleAx, we get the existence of 𝑅 such that

(a) Δ ⊢ [𝑃 ∗𝐴] J𝐶K.1 [𝑅] holds and (b) 𝑅 |= 𝐵 ∗𝑄 . By applying convertible(C), and from (2) and (a),

we get Δ ⊢CSL [𝑃 ∗𝐴] 𝐶 [𝑅]. We conclude by combining (b) with the rule Cons. □

The proof of this lemma is straightforward thanks to CoreIVL’s axiomatic semantics. Relating

CSL to an operational IVL semantics would require substantially more effort to re-prove standard

reasoning principles, which we prove once and for all in the equivalence proof of the two IVL

semantics.

We now need to prove convertible(C) for all𝐶 , which we do by structural induction. The inductive
cases for most statements are straightforward; the interesting cases are allocation, deallocation,

parallel compositions, and while loops. As explained above, the main translation of those statements

follows the same exhale-havoc-inhale pattern, which we have already seen in §2.4, and prove below:

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 20. Publication date: January 2025.

Formal Foundations for Translational Separation Logic Verifiers 20:25

Lemma 4 (Exhale-havoc-inhale). Let 𝑃 and 𝑄 be self-framing assertions.16 Assume that
Δ ⊢ [𝐴] exhale 𝑃 ; havoc 𝑥1; . . . ; havoc 𝑥𝑛 ; inhale 𝑄 [𝐵] holds, where {𝑥1, . . . , 𝑥𝑛} = mod (𝐶). If
Δ ⊢L [𝑃] 𝐶 [𝑄] holds, and if L has a frame rule and a consequence rule, then Δ ⊢L [𝐴] 𝐶 [𝐵] holds.

Proof. By inverting the rule SeqAx, we obtain 𝐹 such that (a) Δ ⊢ [𝐹] inhale 𝑄 [𝐵] and (b) Δ ⊢
[𝐴] exhale 𝑃 ; havoc 𝑥1; . . . ; havoc 𝑥𝑛 [𝐹] hold. From (b), by inverting the rules SeqAx and HavocAx,

we obtain an assertion 𝑅 such that (c) Δ ⊢ [𝐴] exhale 𝑃 [𝑅] holds, (d) fv(𝐹) ∩ {𝑥1, . . . , 𝑥𝑛} = ∅,
and (e) 𝑅 |= 𝐹 .17 By applying the frame rule with 𝐹 and Δ ⊢L [𝑃] 𝐶 [𝑄], where the side condition
is justified by (d), we get Δ ⊢L [𝑃 ∗ 𝐹] 𝐶 [𝑄 ∗ 𝐹]. Finally, we obtain 𝐵 = 𝐹 ∗𝑄 from (a) (by inverting

the rule InhaleAx), and 𝐴 |= 𝑃 ∗ 𝐹 from (c) (by inverting the rule ExhaleAx) and (e); applying the

consequence rule yields Δ ⊢L [𝐴] 𝐶 [𝐵]. □

This proof shows that, in this pattern, the role of the exhale statement, followed by a sequence

of havoc statements, is to compute (implicity) the suitable frame for the front-end statement. The

inhale statement afterwards then adds the postcondition of the front-end statement to the frame.

convertible(free(r)) and convertible(r := alloc(e)) follow directly from the lemma above, by

observing that inhale ⊤ and exhale ⊤ are equivalent to skip (and so omitted when encoding).

To prove convertible(while (b) {C}) (assuming𝐶 is convertible), we first apply Lemma 3 on the

auxiliary method inhale 𝐼 ∧ 𝑏; J𝐶K.1; exhale 𝐼 to get Δ ⊢CSL [𝐼 ∧ 𝑏] 𝐶 [𝐼]. We then apply the rule

While to get Δ ⊢CSL [𝐼] while (𝑏) {𝐶} [𝐼 ∧ ¬𝑏]. Finally, we conclude by applying Lemma 4 on the

main translation (exhale 𝐼 ; havoc mod (𝐶); inhale 𝐼 ∧ ¬𝑏).
The proof of convertible(C1 | |C2) proceeds similarly, by first applying Lemma 3 on the two

auxiliary methods (corresponding to the two premises of the rule Par), then applying the rule Par,

and concluding by applying Lemma 4. This concludes the proof of convertible(C) for all𝐶 , and thus
the proof of Thm. 9.

Summary. We have demonstrated how the axiomatic semantics from §3.3 helps us solve Chal-

lenge 3, by allowing us to prove general lemmas about patterns that are common in front-end

translations in a simple and straightforward manner, and to prove the soundness of a concrete

front-end translation for a parallel programming language with multiple features not present in

the IVL (e.g., loops, dynamic memory allocation and deallocation).

6 Related Work
Semantics of SL-based IVLs. There are two recent formalizations [Parthasarathy et al. 2024;

Zimmerman et al. 2024] of subsets of Viper [Müller et al. 2016b]. However, each of them exposes

implementation details of a Viper back-end, which does not allow the semantics to be connected to

diverse back-ends and also not easily to front-ends. In particular, Parthasarathy et al. [2024] use a

total heap representation reflecting the Viper VCG back-end that translates to Boogie (as discussed

in §4.2), and Zimmerman et al. [2024] reflect Viper’s symbolic execution back-end.

GIL [Maksimovic et al. 2021a], which is the intermediate language of Gillian [Santos et al. 2020;

Maksimovic et al. 2021a], is parametric in its (1) state model, which must be provided as a PCM

(supporting SL but not IDF states in contrast to CoreIVL), (2) memory actions operating on the state

model, and (3) core predicates describing atomic assertions on the memory such as a SL points-to

assertion. For each state instantiation, tool developers targeting GIL must specify produce and
consume actions for each core predicate, which correspond to inhale and exhale operations in
CoreIVL. Together with instantiated parameters, Maksimovic et al. [2021a] provide an operational

semantics for the symbolic execution of GIL. Since the instantiated state effectively reflects the

16
This condition is trivially true for standard SLs.

17
More precisely, we obtain 𝐹 = (∃𝑥1, . . . , 𝑥𝑛 . 𝑅) , from which (d) and (e) follow.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 20. Publication date: January 2025.

20:26 Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J. Summers, and Peter Müller

symbolic state on which the symbolic execution tool operates, a GIL instantiation essentially

represents the back-end semantics. This is in contrast to our CoreIVL, which allows abstracting

over multiple back-ends.

Dardinier et al. [2023] define the semantics of a parametric verification language similar to

CoreIVL for the purpose of showing formal results on method call inlining in automated SL

verifiers. Their semantics is meant to capture IVL back-ends with their heuristics. That is, an

instantiation reflects a single back-end. As a result, in contrast to CoreIVL, their semantics has no

angelic nondeterminism. Moreover, their notion of separation algebra to represent states does not

support IDF.

Proofs connecting a front-end with an IVL. Summers and Müller [2020] and Wolf et al. [2022]

reason about the correctness of translations into a SL-based IVL by providing proof sketches for map-

ping a correct Viper program to a proof for Hoare triples in the RSL weak memory logic [Vafeiadis

and Narayan 2013] and the TaDa logic [da Rocha Pinto et al. 2014], respectively. However, the

reasoning is done via proof sketches on paper, which explore only the high-level reasoning prin-

ciples and thus avoid many of the complexities involved in a fully formal proof. Neither of these

works formally reasons about the underlying Viper semantics; they describe the behavior of Viper

encodings informally.

Maksimovic et al. [2021b] briefly describe a parametric soundness framework for GIL (the

intermediate language of Gillian [Santos et al. 2020; Maksimovic et al. 2021a]). They show that if

certain conditions hold on the instantiations of the GIL parameters, then the resulting symbolic

execution is sound w.r.t. a concretization function on symbolic states. However, they do not provide

an IVL semantics like CoreIVL that abstracts uniformly over multiple back-ends. Additionally, since

GIL does not support concurrency [Santos et al. 2020; Maksimovic et al. 2021a], their soundness

framework cannot reason about the encoding of front-end languages such as ParImp described in §5.

Lööw et al. [2024] present a formal compositional symbolic execution engine inspired by Gillian. In

contrast to our work, they focus on supporting both over-approximating and under-approximating

reasoning, and do not model an IVL, but only apply their framework to a simple front-end language

with a fixed memory model.

There is also work proving the soundness of front-end translations to IVLs not based on SL [Vogels

et al. 2009; Backes et al. 2011; Herms 2013; Fortin 2013; Parthasarathy et al. 2024]. However, in

contrast to our setting, the corresponding translations do not reflect rules in a front-end program

logic. As a result, the soundness proofs work naturally at the level of an operational semantics for

the front-end and IVL. Examples include translations from the Dminor data processing language to

the Bemol IVL [Backes et al. 2011], from C to the WhyCert IVL (inspired by the Why3 IVL) [Herms

2013], and from Viper to Boogie [Parthasarathy et al. 2024] (in the case of the Viper-to-Boogie

translation, Viper is the front-end and Boogie is the target IVL).

Proofs connecting an IVL with a back-end. Parthasarathy et al. [2024] show the soundness of

the Viper back-end that translates to Boogie. In our work, we show that their back-end specific

semantics respects our more generic version (§4.2). The work most closely related to the symbolic

execution back-end presented in §4.1 is Zimmerman et al. [2024]’s formalization of a variant of

Viper’s symbolic execution back-end targeted at gradual verification. Due to their focus on gradual

verification, they only target a simplified model of Viper that (unlike our symbolic execution) does

not support fractional permission. As a consequence, they can use a simpler implementation that

does not rely on continuation passing style and they can ignore some of the complexities described

in §4.1 such as state consolidation. Also they formalize the symbolic execution via a derivation

tree, while we implement it as an Isabelle/HOL function. Vogels et al. [2015] prove a formalization

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 20. Publication date: January 2025.

Formal Foundations for Translational Separation Logic Verifiers 20:27

of VeriFast’s symbolic execution sound. Compared to our work, they do not have a semantics that

captures different verification algorithms, or supports IDF or fractional permissions.

There is also work on non SL-based IVL back-end proofs. These back-ends typically have

simple state models and use different algorithms compared to SL-based back-ends. For example,

Parthasarathy et al. [2021] generate soundness proofs for Boogie’s VCG, and Vogels et al. [2010]

prove a VCG for a similar IVL sound once and for all. Garchery [2021] and Cohen and Johnson-Freyd

[2024] validate certain logical transformations performed in the Why3 IVL verifier.

Angelic non-determinism. Angelic non-determinism [Floyd 1967] has been widely used from

encoding partial programs [Bodík et al. 2010], to representing interaction between code written in

multiple languages [Sammler et al. 2023; Guéneau et al. 2023], to encoding specifications [Floyd

1967; Song et al. 2023]. However, to the best of our knowledge, our work is the first to use angelic

non-determinism to abstract over different verification algorithms. Vogels et al. [2015] and Song

et al. [2023] both also use angelism for exhale, but do not abstract over or formally connect with

diverse back-end algorithms, as we do. Instead, Vogels et al. [2015] use angelism to represent a

symbolic execution algorithm, while Song et al. [2023] use angelism to encode the transfer of

resources in a refinement calculus.

Implicit dynamic frames (IDF). IDF was originally presented with a fixed resource model

(i.e., full ownership to a heap location) and where the heap is represented as a total mapping from

heap locations to values [Smans et al. 2012]. Parkinson and Summers [2012] formally showed the

relationship between IDF and SL by defining a logic based on total heaps and separate permission

masks that captures both. They also consider fixed resource models of IDF and SL (i.e., fractional
ownership to a heap location [Boyland 2003]). Our work generalizes the notion of a separation

algebra [Calcagno et al. 2007; Dockins et al. 2009] to capture arbitrary resource models for IDF and
SL in the same framework. In particular, the algebra does not fix a particular state representation.

This enables, for instance, a partial heap instantiation for IDF that we use to formalize Viper’s state

model (§3.4). SteelCore [Swamy et al. 2020] is a framework with an extensible CSL to reason about

concurrent F* [Swamy et al. 2016] programs. The extensibility of the framework is in particular

demonstrated by allowing IDF-style preconditions of the restricted form 𝑃 ∗𝑏 (compared to the more

general IDF assertions supported in our work), where 𝑃 is an SL assertion, and 𝑏 is a heap-dependent

boolean expression framed by 𝑃 (and similarly for postconditions).

Other approaches. In this paper, we showed how one can formally establish the soundness of

translational SL verifiers, but there are also other approaches to building automated SL verifiers and

establishing their soundness. Steel [Fromherz et al. 2021] is an SL-based proof-oriented programming

language in F*. Steel programs are automatically proved correct using a type checker that is proved

sound against SteelCore; the type checker uses an SMT solver to discharge proof obligations.

Keuchel et al. [2022] (building on the ideas of Vogels et al. [2015]) show how to build a verified

symbolic execution based on a specification monad that allows expressing angelic and demonic non-

determinism and assume and assert statements. They formalize (in Coq) two (structurally identical)

versions of the symbolic execution algorithm: a deeply embedded version that allows execution and

a shallow embedded version to prove soundness of the former. However, both versions represent the

same algorithm; they do not consider different back-ends (like the verification condition generation

back-end in §4.2).

Sammler et al. [2021] propose an approach to building sound verifiers that requires writing the

verifier in a domain specific language called Lithium. Verifiers in Lithium can be automatically

executed inside the Coq proof assistant and produce a foundational proof of correctness. Lithium-

based verifiers are not translational, but work directly on the source-language program.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 20. Publication date: January 2025.

20:28 Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J. Summers, and Peter Müller

7 Conclusion
Wehave presented a formal framework for reasoning about the soundness of translational separation

logic verifiers. We have defined an abstract IVL, whose state model can be instantiated with any

IDF algebra. An operational and an equivalent axiomatic semantics allow one to connect the IVL to

back-ends and front-ends, resp. Crucially, the semantics leverage dual non-determinism to capture

different verification algorithms implemented by different back-end verifiers. We have illustrated

the usefulness of our formal framework by instantiating it with elements of Viper, connecting it to

two Viper back-ends, and using it to prove soundness of a front-end translation for an IDF-based

concurrent separation logic. The main direction for future work is to use our formal framework to

model additional IVLs and prove soundness of complex translational verifiers.

Acknowledgments
We thank Ellen Arlt and Hongyi Ling for their useful feedback on the framework presented in this

paper. This work was partially funded by the Swiss National Science Foundation (SNSF) under

Grant No. 197065.

Data availability statement
All technical results presented in this paper have been formalized and proven in Isabelle/HOL, and

our formalization is publicly available in our artifact [Dardinier et al. 2024b]. The development

version is available at https://github.com/viperproject/viper-roots.

References
Vytautas Astrauskas, Peter Müller, Federico Poli, and Alexander J. Summers. 2019. Leveraging Rust Types for Modular

Specification and Verification. Proc. ACMProgram. Lang. 3, OOPSLA, Article 147, 30 pages. https://doi.org/10.1145/3360573
Sacha-Élie Ayoun, Xavier Denis, Petar Maksimovic, and Philippa Gardner. 2024. A hybrid approach to semi-automated Rust

verification. CoRR abs/2403.15122 (2024). https://doi.org/10.48550/ARXIV.2403.15122 arXiv:2403.15122

Michael Backes, Catalin Hritcu, and Thorsten Tarrach. 2011. Automatically Verifying Typing Constraints for a Data

Processing Language. In Certified Programs and Proofs (CPP), Jean-Pierre Jouannaud and Zhong Shao (Eds.). https:

//doi.org/10.1007/978-3-642-25379-9_22

Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. 2005a. Smallfoot: Modular Automatic Assertion Checking with

Separation Logic. In FMCO (Lecture Notes in Computer Science, Vol. 4111). Springer, 115–137. https://doi.org/10.1007/

11804192_6

Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. 2005b. Symbolic Execution with Separation Logic. In Programming
Languages and Systems, Third Asian Symposium, APLAS 2005, Tsukuba, Japan, November 2-5, 2005, Proceedings (Lecture
Notes in Computer Science, Vol. 3780), Kwangkeun Yi (Ed.). Springer, 52–68. https://doi.org/10.1007/11575467_5

Stefan Blom, Saeed Darabi, Marieke Huisman, and Wytse Oortwijn. 2017. The VerCors Tool Set: Verification of Parallel

and Concurrent Software. In Integrated Formal Methods (IFM), Nadia Polikarpova and Steve Schneider (Eds.). https:

//doi.org/10.1007/978-3-319-66845-1_7

Rastislav Bodík, Satish Chandra, Joel Galenson, Doug Kimelman, Nicholas Tung, Shaon Barman, and Casey Rodarmor. 2010.

Programming with angelic nondeterminism. In POPL. ACM, 339–352. https://doi.org/10.1145/1706299.1706339

John Boyland. 2003. Checking Interference with Fractional Permissions. In Static Analysis (SAS), Radhia Cousot (Ed.). 55–72.
https://doi.org/10.1007/3-540-44898-5_4

Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. 2007. Local Action and Abstract Separation Logic. In Logic in
Computer Science (LICS). 366–375. https://doi.org/10.1109/LICS.2007.30

Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and Andrew W. Appel. 2018. VST-Floyd: A Separation

Logic Tool to Verify Correctness of C Programs. J. Autom. Reason. 61, 1-4 (2018), 367–422. https://doi.org/10.1007/S10817-
018-9457-5

Adam Chlipala. 2011. Mostly-automated verification of low-level programs in computational separation logic. In Proceedings
of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2011, San Jose, CA,
USA, June 4-8, 2011, Mary W. Hall and David A. Padua (Eds.). ACM, 234–245. https://doi.org/10.1145/1993498.1993526

Joshua M. Cohen and Philip Johnson-Freyd. 2024. A Formalization of Core Why3 in Coq. Proc. ACM Program. Lang. 8,
POPL, Article 60 (jan 2024), 30 pages. https://doi.org/10.1145/3632902

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 20. Publication date: January 2025.

https://github.com/viperproject/viper-roots
https://doi.org/10.1145/3360573
https://doi.org/10.48550/ARXIV.2403.15122
https://arxiv.org/abs/2403.15122
https://doi.org/10.1007/978-3-642-25379-9_22
https://doi.org/10.1007/978-3-642-25379-9_22
https://doi.org/10.1007/11804192_6
https://doi.org/10.1007/11804192_6
https://doi.org/10.1007/11575467_5
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1145/1706299.1706339
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1109/LICS.2007.30
https://doi.org/10.1007/S10817-018-9457-5
https://doi.org/10.1007/S10817-018-9457-5
https://doi.org/10.1145/1993498.1993526
https://doi.org/10.1145/3632902

Formal Foundations for Translational Separation Logic Verifiers 20:29

Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. 2014. TaDA: A Logic for Time and Data Abstraction.

In European Conference on Object-Oriented Programming (ECOOP) (Lecture Notes in Computer Science, Vol. 8586), Richard E.
Jones (Ed.). Springer, 207–231. https://doi.org/10.1007/978-3-662-44202-9_9

Thibault Dardinier, Peter Müller, and Alexander J. Summers. 2022a. Fractional resources in unbounded separation logic.

Proc. ACM Program. Lang. 6, OOPSLA2 (2022), 1066–1092. https://doi.org/10.1145/3563326

Thibault Dardinier, Gaurav Parthasarathy, and Peter Müller. 2023. Verification-Preserving Inlining in Automatic Separation

Logic Verifiers. Proc. ACM Program. Lang. 7, OOPSLA1, Article 102 (apr 2023). https://doi.org/10.1145/3586054

Thibault Dardinier, Gaurav Parthasarathy, Noé Weeks, Peter Müller, and Alexander J. Summers. 2022b. Sound Automation

of Magic Wands. In Computer Aided Verification - 34th International Conference, CAV 2022, Haifa, Israel, August 7-10,
2022, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 13372), Sharon Shoham and Yakir Vizel (Eds.). Springer,

130–151. https://doi.org/10.1007/978-3-031-13188-2_7

Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J. Summers, and Peter Müller. 2024a. Formal

Foundations for Translational Separation Logic Verifiers (extended version). CoRR abs/2407.20002 (2024). https:

//doi.org/10.48550/ARXIV.2407.20002

Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J. Summers, and Peter Müller. 2024b. Formal
Foundations for Translational Separation Logic Verifiers – Artifact. https://doi.org/10.5281/zenodo.13938950

Frank S. de Boer and Marcello M. Bonsangue. 2021. Symbolic execution formally explained. Formal Aspects Comput. 33, 4-5
(2021), 617–636. https://doi.org/10.1007/S00165-020-00527-Y

Xavier Denis, Jacques-Henri Jourdan, and Claude Marché. 2022. Creusot: A Foundry for the Deductive Verification of Rust

Programs. In International Conference on Formal Engineering Methods (ICFEM), Adrián Riesco and Min Zhang (Eds.),

Vol. 13478. 90–105. https://doi.org/10.1007/978-3-031-17244-1_6

Robert Dockins, Aquinas Hobor, and Andrew W. Appel. 2009. A Fresh Look at Separation Algebras and Share Accounting.

In Asian Symposium on Programming Languages and Systems (APLAS), Zhenjiang Hu (Ed.). 161–177. https://doi.org/10.

1007/978-3-642-10672-9_13

Marco Eilers, Malte Schwerhoff, and Peter Müller. 2024. Verification Algorithms for Automated Separation Logic Verifiers.

CoRR abs/2405.10661 (2024). https://doi.org/10.48550/ARXIV.2405.10661

Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3 — Where Programs Meet Provers. In European Symposium on
Programming (ESOP), Matthias Felleisen and Philippa Gardner (Eds.). https://doi.org/10.1007/978-3-642-37036-6_8

Robert W. Floyd. 1967. Nondeterministic Algorithms. J. ACM 14, 4 (1967), 636–644. https://doi.org/10.1145/321420.321422

Jean Fortin. 2013. BSP-Why, un outil pour la vérification déductive de programmes BSP : machine-checked semantics and
application to distributed state-space algorithms. (BSP-Why, a tool for deductive verification of BSP programs : sémantiques
mécanisées et application aux algorithmes d’espace d’états distribués). Ph. D. Dissertation. University of Paris-Est, France.

https://tel.archives-ouvertes.fr/tel-00974977

Aymeric Fromherz, Aseem Rastogi, Nikhil Swamy, Sydney Gibson, Guido Martínez, Denis Merigoux, and Tahina Ramananan-

dro. 2021. Steel: proof-oriented programming in a dependently typed concurrent separation logic. Proc. ACM Program.
Lang. 5, ICFP (2021), 1–30. https://doi.org/10.1145/3473590

Quentin Garchery. 2021. A Framework for Proof-carrying Logical Transformations. In Workshop on Proof eXchange for
Theorem Proving (PxTP), Chantal Keller and Mathias Fleury (Eds.). https://doi.org/10.4204/EPTCS.336.2

Armaël Guéneau, Johannes Hostert, Simon Spies, Michael Sammler, Lars Birkedal, and Derek Dreyer. 2023. Melocoton:

A Program Logic for Verified Interoperability Between OCaml and C. Proc. ACM Program. Lang. 7, OOPSLA2 (2023),
716–744.

Paolo Herms. 2013. Certification of a Tool Chain for Deductive Program Verification. (Certification d’une chaine de vérification
déductive de programmes). Ph. D. Dissertation. University of Paris-Sud, Orsay, France. https://tel.archives-ouvertes.fr/tel-

00789543

Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank Piessens. 2011. VeriFast: A

Powerful, Sound, Predictable, Fast Verifier for C and Java. In NASA Formal Methods (LNCS, Vol. 6617). Springer, 41–55.
https://doi.org/10.1007/978-3-642-20398-5_4

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:

Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In POPL. ACM, 637–650. https://doi.org/10.

1145/2676726.2676980

Steven Keuchel, Sander Huyghebaert, Georgy Lukyanov, and Dominique Devriese. 2022. Verified symbolic execution

with Kripke specification monads (and no meta-programming). Proc. ACM Program. Lang. 6, ICFP (2022), 194–224.

https://doi.org/10.1145/3547628

Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris Yakobowski. 2015. Frama-C: A software

analysis perspective. Formal Aspects of Computing 27, 3 (2015), 573–609. https://doi.org/10.1007/s00165-014-0326-7

Bernhard Kragl and Shaz Qadeer. 2021. The Civl Verifier. In Formal Methods in Computer Aided Design, FMCAD 2021, New
Haven, CT, USA, October 19-22, 2021. IEEE, 143–152. https://doi.org/10.34727/2021/ISBN.978-3-85448-046-4_23

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 20. Publication date: January 2025.

https://doi.org/10.1007/978-3-662-44202-9_9
https://doi.org/10.1145/3563326
https://doi.org/10.1145/3586054
https://doi.org/10.1007/978-3-031-13188-2_7
https://doi.org/10.48550/ARXIV.2407.20002
https://doi.org/10.48550/ARXIV.2407.20002
https://doi.org/10.5281/zenodo.13938950
https://doi.org/10.1007/S00165-020-00527-Y
https://doi.org/10.1007/978-3-031-17244-1_6
https://doi.org/10.1007/978-3-642-10672-9_13
https://doi.org/10.1007/978-3-642-10672-9_13
https://doi.org/10.48550/ARXIV.2405.10661
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1145/321420.321422
https://tel.archives-ouvertes.fr/tel-00974977
https://doi.org/10.1145/3473590
https://doi.org/10.4204/EPTCS.336.2
https://tel.archives-ouvertes.fr/tel-00789543
https://tel.archives-ouvertes.fr/tel-00789543
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/3547628
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.34727/2021/ISBN.978-3-85448-046-4_23

20:30 Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J. Summers, and Peter Müller

K. Rustan M. Leino. 2008. This is Boogie 2. (2008). Available from http://research.microsoft.com/en-us/um/people/leino/

papers/krml178.pdf.

K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier for Functional Correctness. In Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR), Edmund M. Clarke and Andrei Voronkov (Eds.). https://doi.org/10.1007/978-

3-642-17511-4_20

K. Rustan M. Leino and Peter Müller. 2009. A Basis for Verifying Multi-threaded Programs. In European Symposium on
Programming (ESOP), Giuseppe Castagna (Ed.), Vol. 5502. Springer, 378–393. https://doi.org/10.1007/978-3-642-00590-

9_27

Andreas Lööw, Daniele Nantes-Sobrinho, Sacha-Élie Ayoun, Caroline Cronjäger, Petar Maksimovic, and Philippa Gardner.

2024. Compositional Symbolic Execution for Correctness and Incorrectness Reasoning. In ECOOP (LIPIcs, Vol. 313).
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 25:1–25:28. https://doi.org/10.4230/LIPICS.ECOOP.2024.25

Petar Maksimovic, Sacha-Élie Ayoun, José Fragoso Santos, and Philippa Gardner. 2021a. Gillian, Part II: Real-World

Verification for JavaScript and C. In CAV (2) (LNCS, Vol. 12760). Springer, 827–850. https://doi.org/10.1007/978-3-030-

81688-9_38

Petar Maksimovic, José Fragoso Santos, Sacha-Élie Ayoun, and Philippa Gardner. 2021b. Gillian: A Multi-Language Platform

for Unified Symbolic Analysis. CoRR abs/2105.14769 (2021). arXiv:2105.14769 https://arxiv.org/abs/2105.14769

PeterMüller, Malte Schwerhoff, and Alexander J. Summers. 2016a. Automatic Verification of Iterated Separating Conjunctions

Using Symbolic Execution. In Computer Aided Verification - 28th International Conference, CAV 2016, Toronto, ON, Canada,
July 17-23, 2016, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 9779), Swarat Chaudhuri and Azadeh Farzan

(Eds.). Springer, 405–425. https://doi.org/10.1007/978-3-319-41528-4_22

Peter Müller, Malte Schwerhoff, and Alexander J. Summers. 2016b. Viper: A Verification Infrastructure for Permission-Based

Reasoning. In VMCAI (Lecture Notes in Computer Science, Vol. 9583). Springer, 41–62. https://doi.org/10.1007/978-3-662-

49122-5_2

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2002. Isabelle/HOL - A Proof Assistant for Higher-Order Logic.
LNCS, Vol. 2283. Springer. https://doi.org/10.1007/3-540-45949-9

Peter W. O’Hearn. 2004. Resources, Concurrency and Local Reasoning. In CONCUR 2004 - Concurrency Theory, 15th
International Conference, London, UK, August 31 - September 3, 2004, Proceedings (Lecture Notes in Computer Science,
Vol. 3170), Philippa Gardner and Nobuko Yoshida (Eds.). Springer, 49–67. https://doi.org/10.1007/978-3-540-28644-8_4

Matthew J. Parkinson and Alexander J. Summers. 2012. The Relationship Between Separation Logic and Implicit Dynamic

Frames. Logical Methods in Computer Science 8, 3:01 (2012), 1–54. https://doi.org/10.2168/LMCS-8(3:1)2012

Gaurav Parthasarathy, Thibault Dardinier, Benjamin Bonneau, Peter Müller, and Alexander J. Summers. 2024. Towards

Trustworthy Automated Program Verifiers: Formally Validating Translations into an Intermediate Verification Language.

Proc. ACM Program. Lang. 8, PLDI, Article 208 (jun 2024), 25 pages. https://doi.org/10.1145/3656438

Gaurav Parthasarathy, Peter Müller, and Alexander J. Summers. 2021. Formally Validating a Practical Verification Condition

Generator. In Computer Aided Verification (CAV) (LNCS, Vol. 12760), Alexandra Silva and K. Rustan M. Leino (Eds.).

704–727. https://doi.org/10.1007/978-3-030-81688-9_33

Ingrid Rewitzky. 2003. Binary Multirelations. In Theory and Applications of Relational Structures as Knowledge Instruments.
LNCS, Vol. 2929. Springer, 256–271. https://doi.org/10.1007/978-3-540-24615-2_12

John C. Reynolds. 2002. Separation logic: A logic for shared mutable data structures. Logic in Computer Science (LICS),
55–74. https://doi.org/10.1109/lics.2002.1029817

Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memarian, Derek Dreyer, and Deepak Garg. 2021. RefinedC:

automating the foundational verification of C code with refined ownership types. In PLDI. ACM, 158–174. https:

//doi.org/10.1145/3453483.3454036

Michael Sammler, Simon Spies, Youngju Song, Emanuele D’Osualdo, Robbert Krebbers, Deepak Garg, and Derek Dreyer.

2023. DimSum: A Decentralized Approach to Multi-language Semantics and Verification. Proc. ACM Program. Lang. 7,
POPL (2023), 775–805. https://doi.org/10.1145/3571220

José Fragoso Santos, Petar Maksimovic, Sacha-Élie Ayoun, and Philippa Gardner. 2020. Gillian, Part i: A Multi-language

Platform for Symbolic Execution. In PLDI. ACM, 927–942. https://doi.org/10.1145/3385412.3386014

Malte Schwerhoff. 2016. Advancing Automated, Permission-Based Program Verification Using Symbolic Execution. Ph. D.
Dissertation. ETH Zurich, Zürich, Switzerland. https://doi.org/10.3929/ETHZ-A-010835519

Malte Schwerhoff and Alexander J. Summers. 2015. Lightweight Support for Magic Wands in an Automatic Verifier (Artifact).

Dagstuhl Artifacts Ser. 1, 1 (2015), 10:1–10:2. https://doi.org/10.4230/DARTS.1.1.10

Jan Smans, Bart Jacobs, and Frank Piessens. 2012. Implicit dynamic frames. ACM Trans. Program. Lang. Syst. 34, 1 (2012),
2:1–2:58. https://doi.org/10.1145/2160910.2160911

Youngju Song, Minki Cho, Dongjae Lee, Chung-Kil Hur, Michael Sammler, and Derek Dreyer. 2023. Conditional Contextual

Refinement. Proc. ACM Program. Lang. 7, POPL (2023), 1121–1151. https://doi.org/10.1145/3571232

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 20. Publication date: January 2025.

http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-00590-9_27
https://doi.org/10.1007/978-3-642-00590-9_27
https://doi.org/10.4230/LIPICS.ECOOP.2024.25
https://doi.org/10.1007/978-3-030-81688-9_38
https://doi.org/10.1007/978-3-030-81688-9_38
https://arxiv.org/abs/2105.14769
https://arxiv.org/abs/2105.14769
https://doi.org/10.1007/978-3-319-41528-4_22
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-540-28644-8_4
https://doi.org/10.2168/LMCS-8(3:1)2012
https://doi.org/10.1145/3656438
https://doi.org/10.1007/978-3-030-81688-9_33
https://doi.org/10.1007/978-3-540-24615-2_12
https://doi.org/10.1109/lics.2002.1029817
https://doi.org/10.1145/3453483.3454036
https://doi.org/10.1145/3453483.3454036
https://doi.org/10.1145/3571220
https://doi.org/10.1145/3385412.3386014
https://doi.org/10.3929/ETHZ-A-010835519
https://doi.org/10.4230/DARTS.1.1.10
https://doi.org/10.1145/2160910.2160911
https://doi.org/10.1145/3571232

Formal Foundations for Translational Separation Logic Verifiers 20:31

Alexander J. Summers and Peter Müller. 2020. Automating deductive verification for weak-memory programs (extended

version). International Journal on Software Tools for Technology Transfer (STTT) 22, 6 (2020), 709–728. https://doi.org/10.

1007/S10009-020-00559-Y

Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud, Simon Forest, Karthikeyan Bharga-

van, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss, Jean Karim Zinzindohoue, and Santiago Zanella Béguelin. 2016.

Dependent types and multi-monadic effects in F. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, Rastislav Bodík and

Rupak Majumdar (Eds.). ACM, 256–270. https://doi.org/10.1145/2837614.2837655

Nikhil Swamy, Aseem Rastogi, Aymeric Fromherz, Denis Merigoux, Danel Ahman, and Guido Martínez. 2020. SteelCore:

an extensible concurrent separation logic for effectful dependently typed programs. Proc. ACM Program. Lang. 4, ICFP
(2020), 121:1–121:30. https://doi.org/10.1145/3409003

Viktor Vafeiadis. 2011. Concurrent Separation Logic and Operational Semantics. In Twenty-seventh Conference on the
Mathematical Foundations of Programming Semantics, MFPS 2011, Pittsburgh, PA, USA, May 25-28, 2011 (Electronic Notes
in Theoretical Computer Science, Vol. 276), Michael W. Mislove and Joël Ouaknine (Eds.). Elsevier, 335–351. https:

//doi.org/10.1016/J.ENTCS.2011.09.029

Viktor Vafeiadis and Chinmay Narayan. 2013. Relaxed separation logic: a program logic for C11 concurrency. In Object
Oriented Programming Systems Languages & Applications, (OOPSLA), Antony L. Hosking, Patrick Th. Eugster, and

Cristina V. Lopes (Eds.). https://doi.org/10.1145/2509136.2509532

Frédéric Vogels, Bart Jacobs, and Frank Piessens. 2009. A Machine Checked Soundness Proof for an Intermediate Verification

Language. In Theory and Practice of Computer Science, Conference on Current Trends in Theory and Practice of Computer
Science (SOFSEM) (Lecture Notes in Computer Science, Vol. 5404), Mogens Nielsen, Antonín Kucera, Peter Bro Miltersen,

Catuscia Palamidessi, Petr Tuma, and Frank D. Valencia (Eds.). Springer, 570–581. https://doi.org/10.1007/978-3-540-

95891-8_51

Frédéric Vogels, Bart Jacobs, and Frank Piessens. 2010. A machine-checked soundness proof for an efficient verification

condition generator. In Proceedings of the 2010 ACM Symposium on Applied Computing (SAC), Sierre, Switzerland, March
22-26, 2010, Sung Y. Shin, Sascha Ossowski, Michael Schumacher, Mathew J. Palakal, and Chih-Cheng Hung (Eds.). ACM,

2517–2522. https://doi.org/10.1145/1774088.1774610

Frédéric Vogels, Bart Jacobs, and Frank Piessens. 2015. Featherweight VeriFast. Log. Methods Comput. Sci. 11, 3 (2015).
https://doi.org/10.2168/LMCS-11(3:19)2015

Felix A. Wolf, Malte Schwerhoff, and Peter Müller. 2022. Concise outlines for a complex logic: a proof outline checker for

TaDA. Formal Methods in System Design 61, 1 (2022), 110–136. https://doi.org/10.1007/S10703-023-00427-W

Conrad Zimmerman, Jenna DiVincenzo, and Jonathan Aldrich. 2024. Sound Gradual Verification with Symbolic Execution.

Proc. ACM Program. Lang. 8, POPL (2024), 2547–2576. https://doi.org/10.1145/3632927

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 20. Publication date: January 2025.

https://doi.org/10.1007/S10009-020-00559-Y
https://doi.org/10.1007/S10009-020-00559-Y
https://doi.org/10.1145/2837614.2837655
https://doi.org/10.1145/3409003
https://doi.org/10.1016/J.ENTCS.2011.09.029
https://doi.org/10.1016/J.ENTCS.2011.09.029
https://doi.org/10.1145/2509136.2509532
https://doi.org/10.1007/978-3-540-95891-8_51
https://doi.org/10.1007/978-3-540-95891-8_51
https://doi.org/10.1145/1774088.1774610
https://doi.org/10.2168/LMCS-11(3:19)2015
https://doi.org/10.1007/S10703-023-00427-W
https://doi.org/10.1145/3632927

	Abstract
	1 Introduction
	2 Key Ideas
	2.1 A Core Language for SL-Based IVLs
	2.2 Background: Translational Verification of a Parallel Program
	2.3 Operational Semantics and Back-End Verifiers
	2.4 Axiomatic Semantics

	3 Semantics
	3.1 An Algebra for Separation Logic and Implicit Dynamic Frames
	3.2 Operational Semantics
	3.3 Axiomatic Semantics
	3.4 ViperCore: Instantiating CoreIVL with Viper

	4 Back-End Soundness
	4.1 Symbolic Execution
	4.2 Verification Condition Generation

	5 Front-End Soundness
	5.1 An IDF-Based Concurrent Separation Logic
	5.2 A Sound Front-End Translation

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

