
DISS. ETH NO. 30699

FORMALLY VALIDATING

TRANSLATIONAL PROGRAM VERIFIERS

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES

(Dr. sc. ETH Zurich)

presented by

GAURAV PARTHASARATHY

MSc ETH CS, ETH Zurich

born on 24.04.1992

accepted on the recommendation of

Prof. Dr. Peter Müller, examiner

Prof. Dr. Alexander J. Summers, co-examiner

Dr. Jean-Christophe Filliâtre, co-examiner

2024

Abstract

Automated program verifiers automatically check whether a software program conforms to a user-provided

specification. This includes checking whether the program will not crash and whether the program will

compute the results specified by the user for every feasible program execution. Such verifiers perform

this automatic check by analysing the input program statically (i. e. without executing the program) using

techniques based on foundations in formal program verification. For successful verification results to be

meaningful, it is crucial that automated program verifiers are sound: that is, whenever the verifier reports

success, then the input program must indeed conform to the user-provided specification. Unfortunately,

there are no formal soundness guarantees for many verifier implementations used in practice, which are

themselves complex software programs. Thus, software bugs in these implementations can and do arise,

which compromises the trustworthiness of successful verification results.

Translational program verifiers form one large class of automated program verifiers whose implementations

typically do not come with formal soundness guarantees. These verifiers apply a series of program-to-program

translations before ultimately producing a set of logical formulas, whose validity is automatically discharged

via external tools such as SMT solvers. Such verifiers are sound only if the validity of the produced logical

formulas implies that the input program conforms to its specification. In this dissertation, we develop

techniques with which one can establish this soundness requirement for translational program verifier

implementations used in practice. In particular, one need not implement a verifier from scratch to use our

techniques: our techniques can be applied to existing implementations used in practice. Given a formal

semantics of the input program, our techniques use a formal per-run validation approach: for each run of

the verifier implementation, we automatically generate a certificate, which formally proves the soundness

requirement. Our generated certificates are expressed in terms of a formal operational semantics of the input

program. Moreover, these certificates are expressed in an interactive theorem prover (Isabelle, in our case),

and thus can be automatically checked in a trustworthy way.

We have applied our techniques to two existing verifier implementations used in practice: (1) the Boogie

verifier implementation, which applies a series of complex Boogie-to-Boogie transformations before ultimately

producing logical conditions, and (2) the Viper verifier implementation, which translates Viper programs to

Boogie programs. As a result of our work, both of these verifier implementations are able to automatically

generate certificates. Our techniques are designed in a general way such that they could be adapted to other

translational program verifiers. In particular, our technique for the Viper verifier is designed more generally

for translations into intermediate verification languages such as Boogie, which form the core of translational

program verifiers.

Zusammenfassung

Automatisierte Verifikationstools für Softwareprogramme prüfen automatisch, ob ein Programm eine

benutzerdefinierte Spezifikation erfüllt. Dieser Prozess prüft unter anderem, ob Ausführungen des Programms

nicht abstürzen, und ob das Programm für jede mögliche Ausführung die korrekten Resultate gemäss

der benutzerdefinierten Spezifikation berechnet. Solche Verifikationstools realisieren diese automatische

Prüfung durch eine statische Analyse des Eingabeprogramms (das heisst, ohne das Programm auszuführen).

Diese statischen Analysen basieren auf Grundlagen der formalen Programmverifikation. Damit erfolgreiche

Verifikationsresultate aussagekräftig sind, ist es entscheidend, dass automatisierte Verifikationstools korrekt
sind: Das heisst, wenn das Verifikationstool ein erfolgreiches Verifikationsresultat meldet, dann muss das

Programm tatsächlich die benutzerdefinierte Spezifikation erfüllen. Leider gibt es für viele in der Praxis

verwendeten Verifikationstools keine formalen Korrektheitsgarantien. Die Implementierungen dieser Tools

sind selber komplexe Softwareprogramme. Daher treten in solchen Implementierungen Softwarefehler auf,

was die Vertrauenswürdigkeit erfolgreicher Verifikationsresultate beeinträchtigt.

Übersetzende Verifikationstools bilden eine grosse Klasse von automatisierten Verifikationstools, für welche es

in der Regel keine formalen Korrektheitsgarantien gibt. Diese Verifikationstools wenden eine Sequenz von

Programm-zu-Programm Übersetzungen an, bevor sie schlussendlich eine Menge von logischen Formeln

generieren, und dann die Gültigkeit dieser Formeln automatisch durch externe Tools (wie z.B. SMT Solver)

prüfen. Solche Verifikationstools sind nur dann korrekt, wenn die Gültigkeit der generierten Formeln

impliziert, dass das Eingabeprogramm die zugehörige Spezifikation erfüllt. In dieser Dissertation entwickeln

wir Techniken, mit denen man diese Korrektheitsbedingung für übersetzende Verifikationstools, welche in

der Praxis verwendet werden, beweisen kann. Insbesondere muss ein Verifikationstool nicht von Grund

auf neu implementiert werden, damit man unsere Techniken anwenden kann: Unsere Techniken können

auf existierende Implementierungen angewendet werden, die in der Praxis verwendet werden. Unsere

Techniken verwenden einen formalen Validierungsansatz, welcher jeden Durchlauf des Verifikationstools

separat validiert: Für jeden Durchlauf des Verifikationstools generieren wir automatisch ein Zertifikat,
welches die Korrektheitsbedingung formal beweist. Unsere generierten Zertifikate werden mit Hilfe einer

formalen Semantik des Eingabeprogramms ausgedrückt; die Existenz einer solchen formalen Semantik

ist eine Voraussetzung für unsere Techniken. Ausserdem werden unsere Zertifikate in einem interaktiven

Theorembeweiser ausgedrückt (wir verwenden Isabelle). Somit können diese Zertifikate automatisch und

vertrauenswürdig überprüft werden.

Wir haben unsere Techniken auf zwei existierende Implementierungen von Verifikationstools angewendet,

die in der Praxis verwendet werden: (1) die Implementierung des Boogie Verifikationstools, welche zuerst

eine Sequenz von komplexen Boogie-zu-Boogie Transformationen anwendet, und dann vom resultierenden

Boogie-Programm logische Formeln generiert, und (2) die Implementierung des Viper Verifikationstools,

welche Viper-Programme in Boogie-Programme übersetzt. Als Ergebnis unserer Arbeit können beide

Implementierungen automatisch Zertifikate generieren. Unsere Techniken sind allgemein konzipiert worden,

so dass man sie auch auf andere Verifikationstools anwenden könnte. Insbesondere ist unsere Technik für das

Viper Verifikationstool allgemein für Übersetzungen in für Verifikation entworfene Zwischensprachen wie

Boogie, welche ein zentraler Bestandteil von übersetzenden Verifikationstools sind, konzipiert worden.

Acknowledgements

Doing a PhD is much more enjoyable if one has an outstanding supervisor such as Peter Müller. Peter, thank

you for always supporting me, for always showing me how to improve as a researcher, and for creating such

a wonderful research environment. I am still amazed by your ability to ask the most important questions,

which transformed seemingly insurmountable problems into well-defined next steps and into high-level

visions clarifying the actual purpose of solving the problems we were facing. You always set the highest

standard for everything you do, which helped me raise the quality of my own work significantly; I hope I am

able to reach your consistently high bar of excellence eventually. In a field where it is normal to postpone

answering requests or questions (or to forget them entirely), you never did; you always took the time to help

out with your full attention. Finally, I am deeply grateful that you always put the well-being of people before

anything else.

Had I not met Alex Summers, I likely would have never become a PhD student in the first place. Alex, thank

you for introducing me to research during my undergraduate and MSc degrees, and for always believing in

me and my work. Your meticulous approach to conducting scientific research was one of the main reasons

why I chose to do a PhD. I was very fortunate to continue working with you as a second supervisor during

my PhD. Your deep scientific curiosity often made me rethink my solutions, pushed my work further, and

gave me a more profound understanding of what I was doing. I am also deeply grateful for our non-technical

conversations about the PhD in general, which helped me appreciate the work I was doing more.

I thank Jean-Christophe Filliâtre for serving on my doctoral examination committee and for providing

valuable comments on this dissertation. Moreover, I would like to thank the following people for providing

valuable feedback on my dissertation: Denis Carnier, Thibault Dardinier, Marco Eilers, Michael Sammler, and

most importantly my supervisors Peter and Alex.

My PhD experience was deeply impacted by my scientific collaboration with Thibault Dardinier. Thibault,

thank you for helping me grow as a researcher, for never giving up on our joint research vision even when

things were looking grim, for always keeping your door open for me no matter how busy you were, and for

the countless discussions that broadened my perspective on research and life in general. Even though we

have been working together for so long now, I am still amazed at your incredibly deep insights, absolutely

exceptional problem-solving skills, and your relentless pursuit of discovering the full truth behind scientific

problems. It has been an honour working with you.

I had the pleasure of doing two amazing research internships: (1) one immediately before my PhD with Derek

Dreyer at MPI-SWS, and (2) one during my PhD with Rustan Leino at AWS. Derek, thank you for taking the

time during my internship to answer many of my questions about research, which further convinced me to

do a PhD. I am also deeply grateful that you invited me to work on the prophecies paper during my PhD,

which increased my confidence in my abilities during a time when things were not yet working out smoothly

in my PhD topic. Rustan, I loved our technical meetings on various verification challenges. Thank you for

reminding me why verification is such a fun research area and for devoting so much of your time to support

me during my internship.

My PhD experience was greatly enriched by being a part of the Programming Methodology (PM) Group. I

am thankful to all its members for establishing an excellent research environment. I thank João C. Pereira for

many long discussions on life and academia, which inspired me and reminded me why I got into PL in the

first place. I thank Felix Wolf for our countless humorous conversations and for doing an excellent job leading

EProg TA teams. I thank Marco Eilers for the many fun conversations on academia, and for being one of the

first PhD students to show me the different aspects of research. I thank Linard Arquint for demonstrating

by example how to do things the right way systematically, Vytautas Astrauskas for creating an inclusive

environment and for the Saturday lunches, Aurel Bílý for fun Wednesday discussions, Lea Brugger for the

miraculous effort of establishing a PM football (not soccer!) tradition, Alexandra Bugariu for all of the advice

on research, Martin Clochard for helpful technical discussions, Xavier Denis for fun discussions on future

possibilities in verification and beyond, Jérôme Dohrau for showing me how to improve as a TA, Jonàš Fiala

for reintroducing social events into the group, Nick Klose for ensuring a high vibe quality at all times, Anqi Li

for inspiring me to be more focused, Hongyi Ling for demonstrating deep mathematical skills that revealed

the essence of complex problems, Christoph Matheja for discussions on how to do research, Wytse Oortwĳn

for discussions on academia, Fábio Pakk Selmi-Dei for supporting the Viper infrastructure, Federico Poli for

showing me what professionalism really means, Michael Sammler for bringing the Viper Roots vision to

the next level and showing me a new way of doing research effectively, Malte Schwerhoff for sharing his

deep and broad experience with Viper, Dionisis Spiliopoulos for recounting his many adventures in hilarious

ways, Arshavir Ter-Gabrielyan for always taking the time to show me how things worked, and Yushuo Xiao

for bringing vague research ideas to life through solutions that I would not have otherwise had the privilege

of witnessing during my PhD. Finally, I would like to thank Sandra Schneider and Marlies Weissert for their

outstanding administrative support, which allowed me to focus on my main PhD work.

I was also fortunate to have many interesting and helpful conversations with other researchers. First, I would

like to thank the Programming Language Foundations Lab whose members share similar research interests

to our group and who enriched our research environment. In particular, I thank Ralf Jung, Isaac van Bakel,

Johannes Hostert, Rudy Peterson, and Max Vistrup. Second, I would like to thank other researchers with

whom I interacted at ETH and outside ETH during my PhD, including Luca Beurer-Kellner, Benjamin Bichsel,

Pavol Bielik, Denis Carnier, Hai Dang, Michael Faes, Son Ho, Vedant Nanda, Clément Pit-Claudel, Damir

Pulatov, Shaz Qadeer, Divya Raghunathan, Koustuv Saha, Joshua Schneider, Reza Sefidgar, Gagandeep Singh,

Samuel Steffen, Jack Stodart, Aaron Tomb, and Chris Wendler.

As part of my PhD, I helped supervise outstanding BSc and MSc students whose work either directly

contributed to this dissertation or indirectly gave me a more profound understanding of aspects of this

dissertation: Ellen Arlt, Benjamin Bonneau, Thibault Dardinier, Alain Delaët–Tixeuil, Lukas Himmelreich,

Aleksandar Hubanov, Andrew Lee, Hongyi Ling, Anouk Paradis, Noé Weeks, and Yushuo Xiao. Thank you

for your excellent work!

I did not understand what mathematics was about until I met my high school (“Kantonsschule”) mathematics

teacher Armin Barth. I thank Herr Barth for his outstanding mathematics lectures, which gave me the

confidence to pursue computer science at university. Moreover, I thank my high school (“Kantonsschule”)

history teacher Rémy Kauffmann who showed me how impactful it can be to clearly communicate ideas.

Finally, I thank my friends and family for being there for me during this journey. Most importantly, I am

deeply grateful to my parents, Usha and Krishnan, for their unconditional support every step along the way.

Irrespective of how things were going during my PhD, they were always there for me.

Contents

Contents ix

1. Introduction 1

1.1. Translational Program Verifiers: An Overview . 3

1.2. State of the Art . 4

1.3. Challenges . 7

1.4. This Dissertation . 9

1.5. Publications and Collaborations . 11

2. Formally Validating a Verification Condition Generator 13

2.1. Introduction . 13

2.2. High-Level Validation Approach . 16

2.2.1. Procedure Decomposition . 16

2.2.2. Transformation Decomposition . 16

2.2.3. Procedure Body Decomposition . 20

2.2.4. A Snippet of a Concrete Certificate in Isabelle . 23

2.2.5. Discussion of Transformations in Next Sections . 24

2.3. A Formal Semantics for Boogie . 24

2.3.1. The Boogie Language . 24

2.3.2. Boogie CFGs . 26

2.3.3. Operational Semantics . 27

2.3.4. Procedure Correctness . 31

2.3.5. Boogie Program Examples . 33

2.3.6. Type Soundness of Expressions . 35

2.4. Cycle Elimination . 37

2.4.1. Cycle Elimination Overview . 37

2.4.2. The Need for Reducibility . 39

2.4.3. Local Block Lemmas . 41

2.4.4. Generating Proofs for Local Block Lemmas . 42

2.4.5. Global Block Theorems . 43

2.4.6. Generating Proofs for Global Block Theorems . 47

2.4.7. Proving Soundness of this Transformation Subsequence 48

2.4.8. Pre- and Postcondition Insertion, Empty Block Insertion 49

2.5. Assignment Elimination . 50

2.5.1. Assignment Elimination Overview . 50

2.5.2. Local Block Lemmas . 52

2.5.3. Generating Proofs for Local Block Lemmas . 54

2.5.4. Global Block Theorems . 56

2.5.5. Generating Proofs for Global Block Theorems . 57

2.5.6. Two Important Properties . 58

2.5.7. Proving Soundness of this Transformation Subsequence 60

2.5.8. Constant Propagation and Old Expression Desugaring 61

2.6. VC Generation . 62

2.6.1. VC Structure . 63

2.6.2. Boogie’s Logical Encoding of the Boogie Type System 64

2.6.3. Working from VC Validity . 66

2.6.4. Certifying the VC Generation . 68

2.6.5. Peephole Optimisations . 73

2.7. CFG Optimisations . 73

2.7.1. Validation Approach for Block Coalescing . 74

2.7.2. Global Block Theorems . 76

2.7.3. Generating Proofs for Global Block Theorems . 78

2.7.4. Unreachable Block Pruning . 79

2.8. A Formal Semantics For Boogie Abstract Syntax Trees . 79

2.8.1. The Boogie AST . 80

2.8.2. Operational Semantics . 81

2.8.3. AST Procedure Correctness . 83

2.9. AST-to-CFG Transformation . 84

2.10. Implementation and Evaluation . 85

2.10.1. Implementation . 85

2.10.2. Experimental Evaluation . 85

2.10.3. Trusted Components . 88

2.11. Related Work . 89

2.12. Future Work . 91

2.12.1. Support for Front-End-Generated Boogie Programs 91

2.12.2. Support for Maps . 93

2.12.3. Monomorphisation . 94

3. Formally Validating Translations into an Intermediate Verification Language 97

3.1. Introduction . 97

3.1.1. Challenges . 98

3.1.2. This Chapter . 99

3.2. A Formal Semantics for Viper . 102

3.2.1. The Viper Language . 103

3.2.2. Viper Example . 107

3.2.3. Operational Semantics: Values and State Model . 108

3.2.4. Operational Semantics: Expression Evaluation . 109

3.2.5. Operational Semantics: Statement Reduction . 112

3.2.6. Correctness of a Viper Program . 119

3.2.7. Illustrating the Viper Semantics on an Example . 121

3.2.8. Semantics Design Decisions . 122

3.3. The Existing Viper-to-Boogie Translation . 123

3.3.1. Challenge 1: The Semantic Gap . 124

3.3.2. Challenge 2: Diverse Translations . 126

3.3.3. Challenge 3: Non-Locality . 127

3.3.4. A Closer Look at the Non-Local Method Call Optimisation 128

3.3.5. Extended Boogie Subset . 131

3.3.6. Background Theory and Polymorphic Maps . 132

3.3.7. Instantiating the Abstract Boogie Values and Defining the Type Interpretation 136

3.4. A Forward Simulation Methodology for Front-End Translations 138

3.4.1. Focusing Forward Simulation Proofs by Decomposition 140

3.4.2. One Simulation Judgement to Rule Them All . 141

3.4.3. Instantiation-Independent Rules . 143

3.4.4. Examples: Generic Decomposition in Action . 144

3.4.5. Injecting Non-Local Hypotheses into Simulation Proofs 152

3.5. Putting The Methodology to Work . 155

3.5.1. State Relation . 155

3.5.2. Dealing with Auxiliary Boogie Variables . 157

3.5.3. Non-Locality . 159

3.5.4. Proof Automation . 164

3.5.5. Relating Viper and Boogie Expressions . 170

3.5.6. Generating a Certificate of the Final Theorem . 173

3.5.7. A Snippet of a Concrete Certificate in Isabelle . 176

3.6. Implementation and Evaluation . 177

3.6.1. Implementation . 177

3.6.2. Evaluation . 178

3.6.3. Trusted Components . 180

3.7. Related Work . 182

3.8. Impact of Work on Viper . 188

3.8.1. Well-Definedness Checks for exhale and inhale . 189

3.8.2. Simple and Effective Encoding Improvements . 190

3.8.3. Self-Framing Predicates . 191

3.9. Future Work . 195

3.9.1. Extend Supported Viper Subset . 195

3.9.2. Extension to Other Simulations . 199

3.9.3. Front-End Translations that Encode Program Logics 200

3.9.4. Leveraging Syntactic Checks on the Boogie Code . 200

3.9.5. End-to-End Certificates . 201

4. Conclusion 203

A. Appendix 207

A.1. Detailed Results of the Evaluation in Chapter 3 . 207

Bibliography 211

Introduction 1.

In many cases it is crucial that software behaves as intended. This means,

for instance, that software does not crash and always computes the

expected results. Cases in which such a property is crucial includes

software that deals with financial transactions, works with sensitive

information, or more generally provides core aspects of a product used

by many users. The most common approach for increasing the confidence

of software in such cases is to test its behaviour on a finite set of use

cases by executing the software on those use cases. Testing cannot take

every possible use case into account because there may be too many such

that executing the software on all of them would not be achievable in

reasonable time. Frequently, there are even infinitely many use cases (for

instance, software may depend on parameters that can be instantiated in

infinitely many ways).

To gain more confidence, formal program verification techniques can be

applied in order to check that software behaves as expected for every
possible use case; this is achieved by statically analysing the software.

Such a static analysis just inspects the software’s source code, but does

not actually execute the software. The significantly stronger guarantee

obtained via formal program verification compared to testing comes at

a nontrivial cost. To obtain these guarantees one must apply complex

program reasoning techniques such as deriving a formal proof in a

program logic. Doing so manually is time-consuming and error-prone. For

instance, when using a program logic one must choose a sequence of

rules in the logic and perform low-level reasoning steps such as proving

nontrivial entailments between logical conditions. To decrease this cost,

automated program verifiers have been developed, which automate the

application of program reasoning techniques. More precisely, given

an input software program, these verifiers require users to provide a

specification for the program (capturing the possible use cases and the

expected results) as well as some auxiliary annotations on the program,

both of which are expressed via some formal language. Given this

information, the verifier automatically checks whether the input program

conforms to the provided specification.

For successful verification results to be meaningful, it is crucial that the

automated program verifier is sound. That is, if the verifier successfully

verifies an input program, then the input program indeed conforms to its

provided specification. It is not sufficient to ensure the soundness of the

program logics that verifiers employ: these verifiers are complex software

programs themselves, and thus it is essential that formal guarantees also

cover their actual implementations, where bugs can and do arise. For many

automated program verifiers, no formal guarantees are shown for their

implementations, potentially raising doubts as to the trustworthiness of

successful verification results.

Translational program verifiers form one large class of automated program

verifiers, for which typically no formal guarantees are shown. These

verifiers apply a series of program-to-program translations to an input

program, followed by a reduction of the resulting program to a set

2 1. Introduction

of logical formulas called verification conditions. The verifier reports

verification success if the verification conditions are valid; validity is

usually checked using an SMT solver. Examples of translational program

verifiers include Boogie [1], Creusot [2], Dafny [3], Frama-C [4], Gobra [5],[1]: Leino (2008), This is Boogie 2
[2]: Denis et al. (2022), Creusot: A Foundry
for the Deductive Verification of Rust Pro-
grams
[3]: Leino (2010), Dafny: An Automatic
Program Verifier for Functional Correctness
[4]: Kirchner et al. (2015), Frama-C: A
software analysis perspective
[5]: Wolf et al. (2021), Gobra: Modular
Specification and Verification of Go Programs

VerCors [6], and Viper [7].

[6]: Blom et al. (2017), The VerCors Tool
Set: Verification of Parallel and Concurrent
Software
[7]: Müller et al. (2016), Viper: A Verifi-
cation Infrastructure for Permission-Based
Reasoning

In practice, translational program verifiers are implemented in efficient

mainstream programming languages, use diverse libraries and program-

ming paradigms, include subtle optimisations, and use approaches that

scale to a large subset of the source language. However, prior work on

ensuring the soundness of translational program verifiers is based on

implementations expressed on paper or in an interactive theorem prover

via languages not used for practical implementations. These idealised

implementations omit many of the optimisations performed by practical

implementations and are typically tailored just to the source language

subset for which soundness is proved. There is a very large gap between

actual implementations used in practice and the idealised implemen-

tations proved sound. This dissertation bridges this gap for the first

time, developing and applying techniques that formally establish the

soundness of existing implementations of translational program verifiers

used in practice. We assume that the produced verification conditions are

valid if verification is successful; our results can be combined with work

on establishing the soundness of SMT solvers [8–10] to obtain end-to-end[8]: Böhme et al. (2010), Fast LCF-Style
Proof Reconstruction for Z3
[9]: Ekici et al. (2017), SMTCoq: A Plug-In
for Integrating SMT Solvers into Coq
[10]: Fleury et al. (2019), Reconstructing
veriT Proofs in Isabelle/HOL

guarantees. The soundness results produced by this dissertation are

expressed in terms of an operational semantics of the source language.

Moreover, these results are expressed and automatically checked in

an interactive theorem prover (ITP) such as Coq [11], Isabelle [12], and

[11]: The Coq Development Team (2024),

The Coq Reference Manual – Release 8.19.0
[12]: Nipkow et al. (2002), Isabelle/HOL -
A Proof Assistant for Higher-Order Logic

Lean [13]. ITPs are designed to be highly trustworthy, which significantly

[13]: Moura et al. (2015), The Lean Theorem
Prover (System Description)

increases the trustworthiness of the produced soundness results.

One possible approach to obtain trustworthy soundness results for an

existing translational program verifier is to import the verifier implemen-

tation into an ITP and to then prove soundness of the implementation

once and for all in the ITP. However, such a once-and-for-all approach is

practically infeasible since existing implementations are large and com-

plex, use a variety of libraries, and are typically written in mainstream

programming languages which themselves lack a formalisation. Even if

one ignores these aspects, convincing developers of verifiers to instead

rewrite implementations using the formalised internal languages that

are part of ITPs themselves is challenging. These ITP languages typically

lack the mature tool infrastructures and the vast libraries provided by

mainstream programming languages.

Instead, we develop translation validation approaches, which check the

soundness of each verifier run separately. In particular, given a formal

semantics for the input program, our approaches automatically generate a

formal certificate on every run of the verifier via an instrumentation of the

existing implementation. Our instrumentation makes only small adjust-

ments to the existing implementation. Therefore, developers need not

change their implementation substantially and they retain the benefits of

mainstream programming languages. Moreover, our certificates formally

establish soundness for a particular verifier run, where soundness is

expressed via the formal semantics of the input program. Our certificates

are expressed along with the formal semantics of the input language in

the Isabelle ITP, and thus provide strong guarantees that can be checked

1.1. Translational Program Verifiers: An Overview 3

independently. These certificates contain sufficient information such that

Isabelle is able to check them automatically. Full automation for checking

certificates, without requiring any user guidance at all, was an important

objective for us because it is crucial in our setting. The main reason is that

our generated certificates are nontrivial and can become quite large. As

a result, if we did not provide full automation for checking certificates,

then this would (1) lead to a large overhead for users, (2) require users to

have expert knowledge about details of our certificates, and (3) require

users to know how to use tools such as interactive theorem provers. Thus,

if we did not provide full automation, then our approach would be much

less attractive.

1.1. Translational Program Verifiers: An

Overview

The goal of a translational program verifier is to obtain verification con-

ditions (VCs) whose validity implies that the input program conforms

to the provided specification. Performing separate program-to-program

translations before computing the VCs instead of directly computing

VCs reduces the complexity of each translation and modularises the de-

velopment of the verifier. Moreover, this separation of concerns enables

the reuse of infrastructure across different translational program verifiers.

This is exemplified in practice: many translational program verifiers

translate a program to an intermediate verification language (IVL). An IVL

comes with its own verifier that ultimately reduces IVL programs to VCs.

For a given IVL, we call a translation from a source language (different

from the IVL) into the IVL a front-end translation, and we call the verifier

reducing the IVL to VCs a back-end verifier. This translational approach via

an IVL allows for the reuse of the IVL’s back-end technology across mul-

tiple translational program verifiers (i. e. different front-end translations

can target the same IVL), and makes for a more understandable target

representation than direct mappings to logical formulas, simplifying the

development of state-of-the-art program verifiers. Note that IVL back-

end verifiers are sometimes translational verifiers themselves, applying

various program-to-program translations before reducing programs to

VCs. They may achieve the reduction to VCs via translation to yet another

IVL that is then reduced to VCs via its own back-end verifier.

The advantages of IVLs for program verifiers are similar to the advan-

tages of intermediate program representations such as LLVM [14]

[14]: Lattner et al. (2004), LLVM: A Com-
pilation Framework for Lifelong Program
Analysis & Transformation

for

compilers. For instance, several common optimisations may be performed

by a back-end verifier, and thus these optimisations benefit any front-end

translation that translates into the corresponding IVL. This is similar to,

for instance, optimisations performed on LLVM programs that benefit

any compiler that targets LLVM. Moreover, having an IVL allows sup-

porting different back-end verifiers for the same IVL that use different

verification approaches (similar to different compilers for intermediate

representations targetting different hardware) without affecting any of

the front-end translations.

There are many examples of front-end translations. Corral [15]

[15]: Lal et al. (2014), Powering the static
driver verifier using corral

, Dafny [3]

[3]: Leino (2010), Dafny: An Automatic
Program Verifier for Functional Correctness

,

and SMACK [16]

[16]: Carter et al. (2016), SMACK software
verification toolchain

translate to the imperative Boogie IVL [1]

[1]: Leino (2008), This is Boogie 2

. Creusot [2]

[2]: Denis et al. (2022), Creusot: A Foundry
for the Deductive Verification of Rust Pro-
grams

4 1. Introduction

and Frama-C [4] translate to the functional Why3 IVL [17]. Gobra [5],[4]: Kirchner et al. (2015), Frama-C: A
software analysis perspective
[17]: Filliâtre et al. (2013), Why3 — Where
Programs Meet Provers
[5]: Wolf et al. (2021), Gobra: Modular
Specification and Verification of Go Programs

Nagini [18], Prusti [19], and VerCors [6] translate to the imperative Viper

[18]: Eilers et al. (2018), Nagini: A Static
Verifier for Python
[19]: Astrauskas et al. (2019), Leveraging
Rust Types for Modular Specification and
Verification
[6]: Blom et al. (2017), The VerCors Tool
Set: Verification of Parallel and Concurrent
Software

IVL [7], which supports separation logic [20] reasoning. The back-end

[7]: Müller et al. (2016), Viper: A Verifi-
cation Infrastructure for Permission-Based
Reasoning
[20]: Reynolds (2002), Separation logic: A
logic for shared mutable data structures

verifiers for the Boogie IVL and the Viper IVL are both translational

verifiers themselves. (Viper has multiple back-end verifiers, one of which

is a translational verifier and one of which uses symbolic execution.) Boo-

gie’s verifier applies multiple Boogie-to-Boogie transformations before

computing the VCs, while Viper’s verifier uses yet another front-end

translation: translating Viper programs to Boogie programs.

There is a wide variety of program-to-program translations applied

by translational program verifiers that have different purposes such

as (1) simplifying the generation of VCs or (2) making the generated

VCs more efficient (e.g. in terms of space). Examples for the former

purpose include (1) front-end translations that translate complex features

in one language to simpler features in a target IVL, (2) the elimination

of loops via loop invariants to avoid fixed-point computations for the

VCs, and (3) the elimination of polymorphism to more easily generate

VCs supported by existing solvers. An example for the latter purpose

is the elimination of assignments by the introduction of fresh variables

(analogous to static single assignment form in compilers) and suitable

assume commands [21–23].[21]: Flanagan et al. (2001), Avoiding expo-
nential explosion: generating compact verifi-
cation conditions
[22]: Leino (2005), Efficient weakest precon-
ditions
[23]: Barnett et al. (2005), Weakest-
precondition of unstructured programs

Since program-to-program translations differ significantly, it is natural

to split the soundness of a translational verifier into multiple parts: (1)

the soundness of each program-to-program translation (if the target

program conforms to its specification then so does the source program),

(2) the soundness of the reduction from the final program to the VCs (if

the VCs are valid, then the final program conforms to its specification),

and (3) the soundness of the solver (if the solver reports success for a

VC, then the VC is valid). These separate soundness results together

ensure the soundness of the translational verifier as a whole. Each of

these results has separate challenges. Therefore, it is natural to develop

different approaches for proving soundness. This dissertation develops

approaches for the soundness of program-to-program translations and for

the reduction of the final program to the VCs. Establishing the soundness

of solvers is a much better-studied problem, which this dissertation does

not tackle. This dissertation’s results can be combined with work on

establishing the soundness of SMT solvers [8–10] to obtain end-to-end[8]: Böhme et al. (2010), Fast LCF-Style
Proof Reconstruction for Z3
[9]: Ekici et al. (2017), SMTCoq: A Plug-In
for Integrating SMT Solvers into Coq
[10]: Fleury et al. (2019), Reconstructing
veriT Proofs in Isabelle/HOL

guarantees.

1.2. State of the Art

This section presents the state of the art, which is related to the formal

validation of translational program verifiers. The presentation is kept at

a high level; some works are discussed in more detail in the related work

sections of the technical chapters (see Section 2.11 and Section 3.7).

Translational program verifiers

There are various works that formally prove the soundness of front-end

translations once and for all, either on paper or in an ITP. These proofs

1.2. State of the Art 5

include translations from BSP, C, and Maple into the Why3 IVL [24–26], [24]: Fortin (2013), BSP-Why, a tool for
deductive verification of BSP programs:
machine-checked semantics and application
to distributed state-space algorithms
[25]: Herms (2013), Certification of a Tool
Chain for Deductive Program Verification
[26]: Khan (2014), Formal Specification and
Verification of Computer Algebra Software

translations from Java Bytecode and an object-oriented language into

Boogie [27, 28], a translation from the Dminor data processing language

[27]: Lehner et al. (2007), Formal Transla-
tion of Bytecode into BoogiePL
[28]: Vogels et al. (2009), A Machine
Checked Soundness Proof for an Interme-
diate Verification Language

into the Bemol IVL [29], and a translation from Chalice into the Viper

[29]: Backes et al. (2011), Automatically
Verifying Typing Constraints for a Data Pro-
cessing Language

IVL [30]. These formalisations do not reflect typical implementations

[30]: Gössi (2016), A Formal Semantics for
Viper

used in practice, which are implemented in mainstream languages and

apply subtle optimisations not present in these formalisations. There-

fore, these results validate an idealised implementation of translational

program verifiers and the high-level design of the verifier, but do not

validate the actual implementations used in practice, which contain many

complexities not captured by the formalised results. For instance, Backes

et al. [29] do not connect their formalised Coq implementation with their

F# implementation that is actually executed. Herms [25] use an executable

extracted from their formalised Coq implementation; they discuss an

optimisation of the translation, which they have not implemented, but

which is included in a more practical verifier implementation.

Vogels et al. [31] formalise and prove the soundness of a verifier that [31]: Vogels et al. (2010), A machine-checked
soundness proof for an efficient verification
condition generator

reduces an IVL program to a verification condition via a series of program-

to-program transformations once and for all in Coq. Their supported

programs form a simple Boogie subset and their program-to-program

transformations are similar to those performed by the Boogie verifier.

However, their Coq implementation does not consider various nontrivial

aspects that are considered by practical verifier implementations such

as Boogie’s. For instance, they do not support loops or unstructured

control flow and thus their transformations work naturally on an abstract

syntax tree representation. In contrast, the Boogie verifier implementa-

tion switches early to a control-flow graph representation to deal with

unstructured control flow (even if the input program uses structured

control flow only), and thus differs significantly from the formalised Coq

implementation. Moreover, Vogels et al. [31] do not support programs

with background theory such as uninterpreted types and functions

supported by Boogie, which simplifies the generation of verification

conditions.

In addition to Vogels et al. [31], there are various works that formally

prove once and for all the soundness of a translation from a program

to VCs. This includes a simple VC generator [32], the generation of [32]: Homeier et al. (1995), A Mechanically
Verified Verification Condition Generator

VCs from a language with implicit dynamic frames assertions [33], the

[33]: Smans et al. (2012), Implicit Dynamic
Frames

generation of VCs for checking relational properties of programs with

pointers [34], and the generation of VCs from a language similar to

[34]: Blatter et al. (2022), Certified Verifi-
cation of Relational PropertiesWhy3 [25]. These proofs (on paper or in an ITP) do not directly connect

[25]: Herms (2013), Certification of a Tool
Chain for Deductive Program Verification

to practical implementations.

After reducing a program to a VC, some verifiers such as the Why3

verifier apply further logical transformations on the VC before handing

the VC to a solver. We do not consider such logical transformations in

this dissertation, since we apply our techniques to verifiers that do not

apply such logical transformations for our considered language subsets.

Garchery [35] develops a translation validation approach, which produces [35]: Garchery (2021), A Framework for
Proof-carrying Logical Transformations

certificates on every run for some of Why3’s logical translations. Cohen

and Johnson-Freyd [36] prove some of Why3’s logical transformations [36]: Cohen et al. (2024), A Formalization
of Core Why3 in Coq

sound once and for all in Coq to demonstrate their Why3 semantics

mechanisation. These works do not prove any part involved in reducing

6 1. Introduction

the initial program to the VC before the logical transformations are

applied.

Compilers

There has been a lot of work on formally validating compiler transla-

tions [37–41]. However, there are significant differences between compiler[37]: Tristan et al. (2008), Formal verifica-
tion of translation validators: a case study on
instruction scheduling optimizations
[38]: Tristan et al. (2009), Verified valida-
tion of lazy code motion
[39]: Rizkallah et al. (2016), A Framework
for the Automatic Formal Verification of Re-
finement from Cogent to C
[40]: Kang et al. (2018), Crellvm: verified
credible compilation for LLVM
[41]: Gourdin et al. (2023), Formally Veri-
fying Optimizations with Block Simulations

translations and program-to-program translations applied by transla-

tional programs verifiers. In particular, in contrast to compilers, transla-

tions applied by translational program verifiers incorporate reasoning

steps, such as assumptions and proof obligations prescribed by a program

logic. This encoding is achieved via components not present in executable

languages such as assume commands, nondeterministic assignments, and

axiomatisations (axiomatisations may, for instance, model parts of a state

or model types such as arrays or sets). Moreover, for compiler translations,

one must typically show that a single target execution corresponds to a

single source execution, while for verifier translations the relationship

is often different (e.g. a single source execution may be justified by the

combination of a set of target executions).

Formal results for other classes of automated program verifiers

While this dissertation focuses on formal results for translational pro-

gram verifiers, there exist other classes of automated program verifiers,

for which formal results have been shown. One popular verification

approach is symbolic execution. Verifiers based on symbolic execution

execute programs using symbolic values, and accumulate constraints on

these values, which are then typically discharged using an SMT solver.

Establishing the soundness of such verifiers requires different techniques

than for translational program verifiers, since symbolic execution does

not perform any program-to-program translations. However, symbolic

execution can be used by IVL back-end verifiers, so translational program

verifiers may ultimately depend on verifiers based on symbolic execu-

tion. In this dissertation, we consider only IVL back-end verifiers that

ultimately produce VCs via a translation from a program to a VC that

captures the entire verification condition of a program. Such a program-

to-VC is translation is very different from symbolic execution, which

queries the SMT solver at different points during a symbolic program

execution, and performs certain checks directly without generating any

logical conditions.

Verifiers based on symbolic execution are often implemented in main-

stream programming languages. Some works formalise subsets of these

verifiers (via a reimplementation) or represent the verifiers using an

operational semantics, and then prove soundness on paper or in an

ITP. Such results have been presented for Gillian [42]

[42]: Lööw et al. (2024), Compositional
Symbolic Execution for Correctness and In-
correctness Reasoning (Extended Version)

, VeriFast [43]

[43]: Vogels et al. (2015), Featherweight
VeriFast

and

Viper [44, 45]

[44]: Zimmerman et al. (2024), Sound
Gradual Verification with Symbolic Execu-
tion
[45]: Dardinier et al. (2025), Formal Foun-
dations for Translational Separation Logic
Verifiers

. Other works use translation validation approaches, which

instrument existing implementations such that they generate certificates

on every run. For instance, this includes the generation of Coq certificates

for VeriFast [46]

[46]: Wils et al. (2023), Certifying C pro-
gram correctness with respect to CH2O with
VeriFast

, and the generation of Metamath [47]

[47]: Megill et al. (2019), Metamath: A
Computer Language for Mathematical Proofs

certificates for

verifiers obtained via the K framework [48]. Finally, there are verifiers[48]: Lin et al. (2023), Generating Proof Cer-
tificates for a Language-Agnostic Deductive
Program Verifier

based on symbolic execution that are by default implemented and proved

sound once and for all in an ITP. Examples for such verifiers based on

1.3. Challenges 7

symbolic execution include Katamaran [49] and VeriSmall [50]; both of [49]: Keuchel et al. (2022), Verified sym-
bolic execution with Kripke specification
monads (and no meta-programming)
[50]: Appel (2011), VeriSmall: Verified
Smallfoot Shape Analysis

these verifiers can be extracted from the ITP to an executable language.

There are a variety of program verifiers that are built within an ITP,

where automation is also achieved via symbolic execution, but where

the symbolic execution is expressed via the metaprogramming and

proof tactic facilities provided by ITPs. As a result, it is typically not

possible to extract the verifier from the ITP. In these verifiers, a verification

run corresponds to automatically finding a proof within the ITP. Thus,

these verifiers are formally established to be sound by default. Examples

of such verifiers include Bedrock [51], Diaframe [52], RefinedC [53], [51]: Chlipala (2011), Mostly-automated ver-
ification of low-level programs in computa-
tional separation logic
[52]: Mulder et al. (2022), Diaframe: auto-
mated verification of fine-grained concurrent
programs in Iris
[53]: Sammler et al. (2021), RefinedC: au-
tomating the foundational verification of C
code with refined ownership types

RefinedRust [54], and VST [55]. In some cases, such verifiers abstract

[54]: Gäher et al. (2024), RefinedRust: A
Type System for High-Assurance Verification
of Rust Programs
[55]: Cao et al. (2018), VST-Floyd: A Sepa-
ration Logic Tool to Verify Correctness of C
Programs

over the ITP facilities via domain specific languages (DSLs) in which the

automation is expressed (such as the Lithium DSL used by RefinedC and

RefinedRust).

The proof-oriented programming language F* proposes another ver-

ification approach via a dependently-typed programming language.

Verification in F* is automated by a type checker, which discharges logical

conditions via an SMT solver. Strub et al. [56] develop a translation

[56]: Strub et al. (2012), Self-certification:
bootstrapping certified typecheckers in F*
with Coq

validation approach, which generates a certificate in Coq on every run,

and apply their approach to a subset of F*. They use a self-certification

approach: since the type checker is written in F*, it is sufficient to produce

a single certificate to establish soundness for every run of the type checker

(by running the type checker on itself). There are also languages built on

top of F*, which can be used for automated verification, such as Steel [57],

[57]: Fromherz et al. (2021), Steel: proof-
oriented programming in a dependently
typed concurrent separation logic

which supports separation logic specifications. Verification in Steel is

proved sound against SteelCore [58] in F*. These works based on F* do

[58]: Swamy et al. (2020), SteelCore: an
extensible concurrent separation logic for
effectful dependently typed programs

not consider program-to-program translations applied by translational

program verifiers.

1.3. Challenges

This dissertation goes beyond the state of the art by providing formal

guarantees for existing and practical implementations of translational

program verifiers, as opposed to formal guarantees for idealised imple-

mentations that are not used in practice. To do so, this dissertation must

address the following high-level challenges:

Challenge 1: Dealing with existing implementations via certificates

It is practically infeasible to formally prove existing implementations used

in practice sound once and for all, since they are large and are expressed

in mainstream programming languages that lack formalisations and

use diverse programming paradigms that are hard to reason about. As

discussed earlier, this dissertation instead develops translation validation

approaches that automatically produce a certificate on every run of the

verifier implementation, which establishes soundness of the verifier run.

As a result, this dissertation must identify suitable certificate representa-

tions. Moreover, it is practically infeasible to manually check the validity

of generated certificates, since they are nontrivial and can be large. As a

result, this dissertation must develop approaches that enable an ITP to

8 1. Introduction

automatically check the validity of the generated certificates, which is a

challenge since ITPs themselves are primarily designed to be used in an

interactive manner. Finally, this dissertation must instrument the existing

implementation to obtain the necessary information to automatically

generate certificates.

Challenge 2: Dealing with translations implemented in practice

Implementations of translational program verifiers that are used in

practice apply optimisations typically not covered by idealised versions.

In particular, verifier implementations used in practice translate certain

features in different ways depending on the context in order to optimise

encodings. The conditions under which the optimisations are sound may

depend on nontrivial semantic conditions that the verifier checks by

emitting explicit checks as part of program-to-program translations.

Moreover, implementations used in practice use translations that scale

to a large subset of the to-be-verified source language. As a result,

such implementations may use different program representations than

idealised implementations, which results in new challenges that must be

addressed. For instance, an implementation may switch from an abstract

syntax tree representation to a control-flow graph representation in order

to deal with unstructured control flow, and then performs all further

translations on the control-flow graph. Idealised implementations often

deal with structured control flow only and as a result only deal with

abstract syntax tree representations.

Challenge 3: Bridging the large gap between source and target

programs

The gap between source and target programs of translations applied by

translational program verifiers is often large. This gap must be bridged

when formally validating these translations. This large gap shows up

for different reasons in different translations. For instance, the source

and target languages themselves may be very different (e.g. in front-end

translations), where the states, statements, and assertion languages may

differ significantly. Another example is that a set of source executions

may be justified by a set of target executions, where there is not a one-

to-one correspondence between executions in the sets. For instance, in

the translation eliminating cycles via loop invariants, a single source

execution is justified by the combination of potentially infinitely many

target executions. Yet another example for the large gap between the

source and target programs is the program-to-VCs translation, since the

program and VCs differ significantly.

In some cases, the state of the art also deals with this challenge. However,

this dissertation must deal with this challenge in addition to the first two

challenges, which are focused on providing guarantees for implemen-

tations used in practice. The interplay of this challenge with the other

two leads to novel challenges not addressed by the state of the art. In

particular, identifying suitable certificate representations and enabling

the automatic checking of the validity of certificates is more challenging

due to the large gap between source and target programs.

1.4. This Dissertation 9

1.4. This Dissertation

This dissertation develops translation validation approaches for formally

establishing the soundness of existing translational program verifiers

used in practice. In particular, this dissertation applies these approaches

to the widely-used Boogie [1] and Viper [7] verifier implementations. [1]: Leino (2008), This is Boogie 2
[7]: Müller et al. (2016), Viper: A Verifi-
cation Infrastructure for Permission-Based
Reasoning

That is, we instrument both existing verifier implementations such that

they automatically produce an Isabelle certificate on each run of the

verifier for a core subset of Boogie and Viper programs.

The Boogie verifier implementation translates a Boogie program to a

VC by first applying a series of Boogie-to-Boogie transformations. Our

produced certificate for a particular Boogie verifier run formally shows

that if the VC is valid, then the input Boogie program conforms to

its specification. This certificate combines separate certificates for the

different transformations applied by Boogie; these certificates establish

the soundness of the corresponding transformations separately. The Viper

verifier implementation translates a Viper program to a Boogie program.

Our produced certificate for a particular Viper verifier run formally

shows that if the Boogie program conforms to its specification, then

the Viper program conforms to its specification. In principle, one could

combine the two certificates to obtain an end-to-end soundness result

(if the VC is valid), but our certificate-producing support for the Boogie

verifier must first be extended to deal with Boogie programs generated

by the Viper verifier as we will elaborate on in Subsection 3.9.5.

This dissertation develops different translation validation approaches for

different kinds of translations. In particular, the approach developed for

the Viper-to-Boogie translation differs from the approaches developed for

the Boogie-to-Boogie transformations and the final generation of the VC

from a Boogie program. Each approach is designed in a general way such

that the approach can be applied to similar translations. For instance,

the approach developed for the Viper-to-Boogie translation is designed

to also work for other front-end translations. Overall, this dissertation

applies these approaches to a wide variety of translations including (1) a

front-end translation (the Viper-to-Boogie translation), (2) two nontrivial

translations within the same language (cycle elimination and assignment

elimination applied by the Boogie verifier), and (3) the generation of VCs

(the final generation of the VC applied by the Boogie verifier).

This dissertation’s validation approaches are designed to enable the

automation of two core aspects: (1) the automatic generation of certificates,

and (2) the automatic checking of generated certificates. Both of these

aspects are fully automatic in our certificate-producing support for the

Boogie and Viper verifiers. That is, there is no user interaction required

in the generation and checking of certificates. Our instrumentations

of the verifiers enable the automatic generation of certificates, which

contain sufficient information for Isabelle to automatically check them.

The generated certificates contain fine-grained Isabelle tactics, which

provide instructions for how to prove formal statements. Many of the

tactics in our certificates are straightforward for Isabelle to successfully

execute as desired (such as a tactic that specifies the application of a

lemma). Some of the tactics in our certificates are more involved and lead

to Isabelle itself performing some sort proof search. In theory, in this

latter case, there is no guarantee that Isabelle successfully executes these

10 1. Introduction

tactics. However, in practice, as our evaluation shows, Isabelle succeeds

almost always,
1

and thus, successfully checks our generated certificates1: In the case of Boogie, there are rare

cases where Isabelle is not able to suc-

cessfully execute some tactics as desired;

it is clear how to extend our work to fix

these cases.

automatically.

In summary, we make the following high-level contributions in this

dissertation:

▶ We develop general translation validation approaches for a large

variety of translations applied by translational program verifiers.

▶ We apply these general approaches to existing verifier implementa-

tions that are used in practice. This application results in certificate-

producing instrumentations of the Boogie and Viper verifier im-

plementations. The generation and subsequent checking of these

certificates is fully automatic.

▶ To enable trustworthy certificates, we mechanise subsets of the

Boogie and Viper languages in Isabelle. For both Boogie and Viper,

these are the first mechanisations of the chosen subsets.

Impact on Boogie and Viper ecosystems

In addition to the mentioned contributions, this dissertation’s work has

led to insights that have had a positive impact on the Boogie and Viper

ecosystems. We discuss some of this impact in more detail in Section 3.8

and Chapter 4. At a high level, our work on Boogie enabled discussions

on nontrivial Boogie features, where alternative encodings were being

explored by Boogie developers. Moreover, our work also enabled reason-

ing formally about translations into Boogie, which led to novel insights

into the existing Dafny-to-Boogie and Viper-to-Boogie translations. For

instance, we improved the existing Viper-to-Boogie translation along

multiple dimensions: (1) fixing a previously undiscovered soundness

issue, and (2) improving the code in general (e.g. leading to better error

reporting and to a cleaner implementation).

Our work on Viper also helped gain important insights into the se-

mantics of Viper in general. While we point out insights specific to

this dissertation here, projects that were led by Thibault Dardinier also

generated significant insights into the semantics that are not presented

in this dissertation. In general, the overall work on providing formal

foundations for the Viper ecosystem was a collaborative effort. This

collaborative effort of understanding the Viper semantics as a whole (e.g.
beyond the Viper subset considered in this dissertation) was crucial to

understand how to define the semantics in this dissertation such that the

work presented here is extensible to larger Viper subsets. In particular,

this effort revealed that one had to take certain design decisions in the

semantics, which were not known before, and also clarified the semantics

of various nontrivial Viper features and their interactions. Finally, the

work presented in this dissertation is important to make sure that the

Viper verifier implementation itself respects the semantics we had in

mind.

Outline

Chapter 2 presents our formal validation approach for the existing Boogie

verifier. Chapter 3 presents our formal validation approach for front-end

1.5. Publications and Collaborations 11

translations and applies this approach to the existing Viper-to-Boogie

translation. Finally, Chapter 4 concludes.

The chapters present additional information, which is not required

to follow the main text, but which are nevertheless relevant (such as

alternative approaches and additional context information), in blue boxes

such as the following:

Title for additional information

Text describing additional information

1.5. Publications and Collaborations

The main results of this dissertation were presented in two separate

publications.

The main results of Chapter 2 were presented in:

Gaurav Parthasarathy, Peter Müller, Alexander J. Summers.
Formally Validating a Practical Verification Condition Generator
In Computer-Aided Verification (CAV) 2021 [59]

The main results of Chapter 3 were presented in:

Gaurav Parthasarathy, Thibault Dardinier, Benjamin Bonneau, Peter Müller,
Alexander J. Summers.
Towards Trustworthy Automated Program Verifiers: Formally Validating Trans-
lations into an Intermediate Verification Language
In Proceedings of the ACM Programming Languages (PLDI) 2024 [60]

The work in this dissertation, including the writing and technical work

in the publications, was led by me.
2

In addition to my supervisors, 2: Here, I use first person singular to

distinguish my contributions.
I collaborated with various people who contributed to parts of this

dissertation. Aleksandar Hubanov and Lukas Himmelreich helped with

the formal validation of Boogie as part of Bachelor’s theses supervised by

me [61, 62] (this work happened after the corresponding publication [59]). [61]: Hubanov (2022), Formally Validating
the AST-to-CFG Phase of the Boogie Pro-
gram Verifier
[62]: Himmelreich (2023), Formally Vali-
dating the CFG Optimization Phase of the
Boogie Program Verifier

Aleksandar implemented the formal validation for the AST-to-CFG

transformation briefly discussed in Section 2.9, and Lukas implemented

the formal validation for the CFG optimisations discussed in Section 2.7.

I did all of the remaining formal validation work on Boogie. Alain

Delaët–Tixeuil’s internship project cosupervised by me made it clearer to

me that formally validating the Boogie implementation is a worthwhile

research project. I did most of the work for the Viper-to-Boogie translation.

However, two people had an important impact on this work. Thibault

Dardinier helped with numerous discussions on formal models of Viper

in general and on the formal validation of the translation. Thibault

also helped with the evaluation of the work. As part of an internship

project cosupervised by me, Benjamin Bonneau explored the formal

validation of the Dafny-to-Boogie translation [63]. This work helped [63]: Bonneau (2021), A formal foundation
for the Dafny verifier

identify certain aspects that needed to be generalised for a practical

validation approach and helped choose the direction for the Viper-to-

Boogie work. Moreover, I adapted the state relation instantiation and

the Boogie abstract value instantiation from Benjamin’s work to the

Viper-to-Boogie setting (see Subsection 3.5.1 and Subsection 3.3.7).

12 1. Introduction

Contributions beyond this dissertation

In the time working on this dissertation, I contributed to the following

publications, which were led by other researchers:

Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J.
Summers, and Peter Müller
Formal Foundations for Translational Separation Logic Verifiers
In Proceedings of the ACM Programming Languages (POPL) 2025 [45]

Thibault Dardinier, Gaurav Parthasarathy, Peter Müller
Verification-Preserving Inlining in Automatic Separation Logic Verifiers
In Proceedings of the ACM Programming Languages (OOPSLA) 2023 [64]

Thibault Dardinier, Gaurav Parthasarathy, Noé Weeks, Peter Müller, Alexander
J. Summers
Sound Automation of Magic Wands
In Computer-Aided Verification (CAV) 2022 [65]

Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin
Timany, Derek Dreyer, Bart Jacobs
The Future is Ours: Prophecy Variables in Separation Logic
In Proceedings of the ACM Programming Languages (POPL) 2020 [66]

Formally Validating a Verification

Condition Generator 2.

2.1. Introduction

The Boogie verifier is a translational verifier: it performs a sequence

of substantial Boogie-to-Boogie transformations followed by the final

generation of a verification condition (VC). The verification condition is

then discharged by a SMT solver. The main purpose of the applied

transformations is to adjust the program in order to optimise or simplify

later transformations, and to generate a space-efficient VC (based on the

technique described by Barnett and Leino [23]). Since the Boogie verifier [23]: Barnett et al. (2005), Weakest-
precondition of unstructured programs

contains all transformations from the input to the VC, the verifier itself is

a verification condition generator.

In this chapter, we develop techniques to establish the soundness of the

existing Boogie verifier implementation. The Boogie verifier is sound if

the input Boogie program is correct whenever the SMT solver reports that

the generated VC is valid. Existing work that establishes the soundness of

translational program verifiers is based on idealised implementations that

are formalised on paper or in an interactive theorem prover. As discussed

in Chapter 1, there is a large gap between these implementations and

existing verifier implementations used in practice which can and do

exhibit soundness bugs. In this chapter, we bridge this gap by developing

an approach to formally validate runs of the existing Boogie verifier

implementation.

Proving the existing Boogie verifier implementation once and for all

is practically infeasible, since it consists of over 30K lines of code, and

is written in C#, a language that lacks a formalisation. Instead, we use

a formal translation validation approach: we instrument the existing
Boogie verifier implementation such that on every run of the verifier

a certificate is generated. The generated certificate formally establishes

soundness of the corresponding verifier run under the assumption that

the generated VC is valid. Certification of the validity-checking of the

VC is an orthogonal concern; our results can be combined with work

in that area (see [8–10]) to obtain end-to-end guarantees. Our generated [8]: Böhme et al. (2010), Fast LCF-Style
Proof Reconstruction for Z3
[9]: Ekici et al. (2017), SMTCoq: A Plug-In
for Integrating SMT Solvers into Coq
[10]: Fleury et al. (2019), Reconstructing
veriT Proofs in Isabelle/HOL

certificates are expressed in the Isabelle theorem prover [12] and connect

[12]: Nipkow et al. (2002), Isabelle/HOL -
A Proof Assistant for Higher-Order Logic

directly to an operational semantics of input Boogie programs. Thus,

our certificates provide formal and trustworthy guarantees. Moreover,

we include sufficient information in the certificates such that Isabelle is

able to automatically check them. Ensuring the automatic checking of

certificates is crucial, since the size and complexity of certificates make

manually checking them practically infeasible.

The key challenges in certifying runs of the Boogie verifier are to certify

each of the transformations applied by the verifier, including the final

generation of the VC. In particular, we present novel techniques for

making the following three key transformations (and many smaller ones)

of Boogie’s tool chain certifying (the final certificate uses all of these

techniques to establish an end-to-end soundness result incorporating all

transformations):

14 2. Formally Validating a Verification Condition Generator

1. The elimination of loops (more precisely, cycles in the control-

flow graph) by reducing the correctness of loops to checking loop

invariants.

2. The elimination of assignments by (static-single-assignment-style)

introduction of fresh variables and suitable assume commands.

3. The final generation of the VC, which includes the erasure and

logical encoding of Boogie’s polymorphic type system [67].[67]: Leino et al. (2010), A Polymorphic
Intermediate Verification Language: Design
and Logical Encoding

The formal validation of the two program-to-program transformations is

related to existing work on compiler verification [68] and validation [37,[68]: Leroy (2006), Formal certification of
a compiler back-end or: programming a com-
piler with a proof assistant

69]. However, both key Boogie-to-Boogie transformations and the certi-

[37]: Tristan et al. (2008), Formal verifica-
tion of translation validators: a case study on
instruction scheduling optimizations
[69]: Barthe et al. (2014), Formal Verifica-
tion of an SSA-Based Middle-End for Comp-
Cert

fied soundness property of the transformations that we tackle here are

fundamentally different from those in compilers. Compilers typically

require that each execution of the target program corresponds to an exe-

cution of the source program. As a result, compiler translations typically

do not introduce nondeterminism. In contrast, cycle elimination and

assignment elimination introduce nondeterminism via nondeterministic

assignments and assume commands. In the case of cycle elimination, a

set of target executions together justify a single source execution. Prior

work on validating such verifier transformations has been limited in

the supported language and extent of the formal guarantee; we discuss

comparisons in detail in Section 2.11.

Contributions

This chapter makes the following technical contributions:

1. The first formal semantics for a significant subset of Boogie (includ-

ing axioms, polymorphism, type constructors, and type quantifica-

tion) that is mechanised in Isabelle.

2. A validation technique for two core program-to-program transfor-

mations occurring in verifiers (cycle elimination and assignment

elimination), along with validation techniques for smaller transfor-

mations such as the transformation from an abstract syntax tree

to a control-flow graph representation and the coalescing of basic

blocks in a control-flow graph. All of these validation techniques

follow the same general principle.

3. A validation technique for the final generation of the VC, handling

polymorphism erasure and Boogie’s type system encoding [67],

for which no prior formal proof exists. This validation technique

follows the same general principle as the techniques developed for

the program-to-program transformations.

4. An instrumentation of the existing Boogie implementation that

produces automatically checkable certificates for the subset of

Boogie that we formalise.

Making the Boogie verifier certifying is an important result, reducing the

trusted code base for a wide variety of translational program verifiers

implemented via translations into Boogie, such as Corral [70]

[70]: Lal et al. (2012), A Solver for Reacha-
bility Modulo Theories

, Dafny [3]

[3]: Leino (2010), Dafny: An Automatic
Program Verifier for Functional Correctness

,

SMACK [16]

[16]: Carter et al. (2016), SMACK software
verification toolchain

, SYMDIFF [71]

[71]: Lahiri et al. (2012), SYMDIFF: A
Language-Agnostic Semantic Diff Tool for
Imperative Programs

, VCC [72]

[72]: Cohen et al. (2009), VCC: A Practical
System for Verifying Concurrent C

, and Viper [7]. Moreover, the tech-[7]: Müller et al. (2016), Viper: A Verifi-
cation Infrastructure for Permission-Based
Reasoning

nical approaches we present here could be adapted to other translational

verifiers that use similar translations.

2.1. Introduction 15

Outline

Section 2.2 discusses the translations applied by the Boogie verifier and

how our validation approach is structured at a high level. Section 2.3

introduces a formal semantics for Boogie control-flow graphs. Section 2.4,

Section 2.5 and Section 2.6 present our validation of cycle elimination,

assignment elimination, and the final generation of the VC, respectively.

Section 2.7 presents our validation of control-flow graph optimisations.

Section 2.8 introduces a formal semantics for Boogie abstract syntax trees

and Section 2.9 briefly discusses our validation of the translation from

an abstract syntax tree to a control-flow graph. Section 2.10 evaluates

our certificate-producing version of Boogie. Section 2.11 discusses related

work and Section 2.12 discusses future directions.

Access to tool and Isabelle formalisation

Our certificate-producing version of Boogie is available online:

▶ Repository:

https://github.com/viperproject/boogie-proofgen

▶ Branch for dissertation: dissertation-gaurav

▶ Commit hash at time of dissertation submission:

b7e20dc43633ff02cef180de544cef15a1a3be43

The main code for generating certificates is in the Source/ProofGeneration
folder, which contains exclusively new code added by us. The existing

Boogie verifier itself is spread across the remaining subfolders of Source.
For instance, Source/BoogieDriver contains the entry point of the verifier,

Source/Core contains the abstract syntax tree representation for Boogie

programs and code for some of the earlier transformations in Boogie’s

pipeline, and Source/VCGeneration contains code for the later transforma-

tions including assignment elimination and final VC generation. We have

instrumented parts of these folders containing the existing Boogie verifier

in order to obtain sufficient information to generate certificates. The lines

of added code for the instrumentation is significantly smaller than the

code that actually generates certificates (the latter is in Source/ProofGen-
eration). A large part of the code added as part of the instrumentation

invokes methods in Source/ProofGeneration/ProofGenerationLayer.cs, which

serves as an interface between the existing Boogie verifier and the code

generating certificates.

Our formal Boogie semantics and the metatheory used by the certificates

is available online [73]:

▶ Repository:

https://github.com/viperproject/foundational-boogie

▶ Branch for dissertation: dissertation-gaurav

▶ Commit hash at time of dissertation submission:

90411340ac568c7870e85dd9ec627b84f01e79a3

https://github.com/viperproject/boogie-proofgen
https://github.com/viperproject/foundational-boogie

16 2. Formally Validating a Verification Condition Generator

2.2. High-Level Validation Approach

A Boogie program consists of global declarations and procedures. Global

declarations model the background theory (for example, axiomatising

types not supported directly by Boogie), and define global variables

and constants. Each procedure has a specification (a pre- and postcondi-

tion) and a procedure body. Boogie verifies each procedure modularly,

desugaring procedure calls according to their specifications. Verification

of each procedure is implemented via a sequence of transformations:

procedure-to-procedure transformations and a final computation of a

verification condition (VC) to be checked by an SMT solver. Our goal is

to formally certify (per run of Boogie) that the conjunction of the validity

of the VCs for each procedure implies the correctness of the original

program.

To keep the complexity of certificates manageable, our technical ap-

proach is modular in three dimensions. First, we generate certificates for

each procedure in the Boogie program separately. Second, for a given

procedure, we generate certificates for different subsequences of transfor-
mations separately. Third, for a sequence of transformations, we generate

certificates for smaller parts of the corresponding source procedure body and
target procedure body (or target VC) separately (e.g. blocks in a control-flow

graph); the high-level idea for this decomposition is the same for all

sequences of transformations that we consider. This modularity makes

the full automation of checking certificates in Isabelle practical. In the

following, we give a high-level overview of this modular structure. At

the end (see Subsection 2.2.4), we show a small snippet of a concrete

Isabelle certificate automatically generated by our tool. The formal se-

mantics of Boogie programs and the details of the certificate generation

are presented in subsequent sections.

2.2.1. Procedure Decomposition

Boogie has no notion of a main procedure or an overall program execu-

tion. A Boogie program is correct if each of its procedures is individually

correct w.r.t. the global declarations in the program (which includes user-

provided axioms and uninterpreted functions). A procedure is correct if

its body has no failing executions, as we make precise in Section 2.3. Boo-

gie computes a separate VC for each procedure, and we correspondingly

validate the verification of each procedure separately. That is, we generate

a certificate showing that the validity of the VC generated for a procedure

implies that the procedure in the original program is correct.

2.2.2. Transformation Decomposition

Boogie parses an input program into an abstract syntax tree (AST)

representation and then applies the sequence of transformations shown by

the solid (black) edges in Figure 2.1 to each procedure. (If input programs

have certain features outside of our supported Boogie subset, then Boogie

applies more transformations, which we do not show in Figure 2.1.)

The first transformation constructs a control-flow graph (CFG) from the

2.2. High-Level Validation Approach 17

𝑃1

𝑃2

𝑃3

𝑃4

𝑃5

𝑃6

𝑃7

𝑃8

VC

AST-to-CFG

CFG optimisations

Cycle elimination

Pre- and postcondition insertion

Empty blocks insertion

Assignment elimination (+

constant propagation and

old expr. desugaring)

Peephole optimisations

Final VC generation

valid(VC)
|=
correct(𝑃7)

correct(𝑃7)
|=
correct(𝑃6)

correct(𝑃6)
|=
correct(𝑃3)

correct(𝑃3)
|=
correct(𝑃2)

correct(𝑃2)
|=
correct(𝑃1)

valid(VC) |= correct(𝑃1)

Figure 2.1: Transformations applied by Boogie to a procedure and the certificates generated by our certificate-

producing version of Boogie. The solid edges show Boogie’s transformations on a procedure body. The

node 𝑃1 represents the Boogie abstract syntax tree of a procedure in the input program. The other nodes

𝑃𝑖 (2 ≤ 𝑖 ≤ 8) represent Boogie control-flow graphs, and the node VC represents the verification condition.

Our final certificate (dashed edge in green) is constructed by formally linking the transformation certificates

represented by the dotted edges in blue. Each transformation certificate formally validates one or more

transformations.

18 2. Formally Validating a Verification Condition Generator

AST. The source procedures of all the subsequent transformations are

represented as CFGs.

We generate independent soundness certificates for different subse-

quences of transformations, essentially showing that the correctness of

the target procedure (or validity in case of the VC) after the application of

the transformations implies the correctness of the source procedure before
the application of the transformations. In Figure 2.1, these certificates

are shown via the dotted (blue) edges. For example, we certify that the

correctness of the procedure 𝑃6 (obtained after the insertion of empty

blocks) implies the correctness of the procedure 𝑃3 (obtained before

applying the elimination of cycles). This certificate justifies a subsequence

of three transformations. Finally, we glue these certificates together to

guarantee the end-to-end property for the entire pipeline, namely that

the validity of the VC implies that the input procedure is correct, as

shown by the dashed (green) edge in Figure 2.1.
1

For our certificates, we1: We currently trust the parser. That is,

we do not prove a formal connection be-

tween the AST and the textual representa-

tion of the program. The trustworthiness

of the Boogie parser becomes irrelevant

for front-end translations into Boogie if

one proves a connection between a front-

end program and Boogie’s AST program

(as we will do in Chapter 3).

import the related source and target procedures (or target VC) of each

subsequence of transformations from Boogie into Isabelle; we do not

reimplement any of Boogie’s transformations inside Isabelle.

Our modular approach lets us treat transformations that have funda-

mentally different challenges separately, which makes the certification

strategies simpler. Moreover, certificates for a subsequence of transforma-

tions are robust to changes to other transformations. Both of these argu-

ments (simpler certification strategies and robustness) become stronger

if one generates a separate certificate for each single transformation in-

stead of considering larger subsequences. However, considering single

transformations comes at a cost: one must represent every intermediate

program in the pipeline explicitly in the certificates, which leads to larger

certificates and thus slower certificate checking. By considering larger

subsequences, we make a trade-off: we choose slightly more complex

certificates and we are less robust to changes, but instead get smaller

certificates. For example, in our certificate relating 𝑃6 with 𝑃3 in Figure 2.1,

the intermediate procedures 𝑃4 and 𝑃5 are never made explicit in the

certificate (and thus not imported into Isabelle).

Boogie’s transformations

We now give an overview of the transformations shown in Figure 2.1 and

motivate our choice for the different transformation subsequences that

we consider in separate certificates.

The three most substantial and technically-challenging transformations

are cycle elimination, assignment elimination, and final VC generation. Since

each of these transformations has very different challenges, we make sure

that they are handled in different certificates for different transformation

subsequences.

Cycle elimination translates a CFG to an acyclic CFG (see Section 2.4). This

transformation substantially alters the possible executions through the

target CFG compared to the source CFG by cutting loops using annotated

loop invariants to overapproximate the executions in the source CFG.

The transformation cuts the loops by eliminating back edges, that is, edges

from the end of a loop to the loop’s entry. To identify loops and their

2.2. High-Level Validation Approach 19

corresponding back edges in a control-flow graph, Boogie computes

dominators for blocks in the CFG, which is a nontrivial computation.
2

2: A block 𝑏 dominates a block 𝑏′ if every

path from the entry block of the proce-

dure to 𝑏′ visits 𝑏.Our certificate for cycle elimination includes a transformation that inserts

pre- and postconditions, and a transformation that inserts empty blocks.

Including these these smaller transformations does not add much com-

plexity to the generated certificate. Boogie inserts pre- and postconditions

explicitly into the CFG via assume and assert commands (potentially

adding new blocks to the CFG). Boogie inserts empty blocks to ensure

that there are no join blocks (i. e. blocks with multiple predecessors) that

have a predecessor with multiple successors. This is required to en-

sure that the elimination of assignments is sound in general, as we will

discuss in Subsection 2.5.6. We discuss these transformations and the

corresponding certification strategy in Section 2.4.

Assignment elimination removes imperative updates by transforming

the code into static single assignment (SSA) form and then replacing

assignments with constraints on variable versions (see Section 2.5). This

elimination yields a passified CFG, that is, a CFG without any updates

to variables.
3

Assignment elimination introduces extra nondeterminism 3: As a result, assignment elimination

is sometimes called passification in the

literature.

and assume commands (which, if implemented incorrectly could make

verification unsound by masking errors in the program), and changes

the set of local variables in the procedure substantially, which com-

plicates the state relationship between executions before and after the

transformation.

Assignment elimination is implemented simultaneously with two other

changes to the procedure: (1) constant propagation, and (2) old expression

desugaring (expressions where the global variables refer to their values

as they were at the beginning of the corresponding procedure). As a

result, to avoid any further complexity, we generate a certificate just

for assignment elimination together with constant propagation and old

expression desugaring without incorporating any other transformations.

We discuss assignment elimination and our corresponding certification

strategy in Section 2.5.

The final generation of the VC translates the acyclic, passified CFG to a

verification condition that, in addition to capturing the weakest precon-

dition of the source procedure, encodes away Boogie’s polymorphic type

system [67]. Our certificate for the final generation of the VC includes the [67]: Leino et al. (2010), A Polymorphic
Intermediate Verification Language: Design
and Logical Encoding

preceding peephole optimisations, which do not add much complexity.

These peephole optimisations just prune unreachable blocks and remove

empty blocks. We discuss the details of the final generation of the VC

and our corresponding certification strategy in Section 2.6.

In addition to these three certificates for the three discussed subsequences,

we generate separate certificates for the AST-to-CFG transformation and

the CFG optimisations. The CFG optimisations coalesce blocks and prune

unreachable blocks. The coalescing of blocks requires some special care in

the certificates and is one reason why we deal with the CFG optimisations

in a separate certificate. Another reason is that we want the certificate

generation for the AST-to-CFG transformation to be unaffected even if

more complex CFG optimisations were added.

The CFG optimisations contain two separate transformations that we

combine in a single certificate. (Figure 2.1 shows these two separate

20 2. Formally Validating a Verification Condition Generator

transformations as a single transformation for the sake of presentation).

The first transformation prunes certain blocks that cannot be reached by

any execution and the second transformation coalesces certain blocks.

Additionally, the CFG optimisations contain a third transformation that

eliminates dead variables. Our certificates do not support this third

transformation yet. If there are no dead variables, then we are still

able to generate the certificate as shown in Figure 2.1. If there are dead

variables that Boogie eliminates, then we obtain a weaker result: we

show the soundness of the AST-to-CFG transformation and that the

validity of the VC implies the correctness of the CFG after the AST-to-

CFG transformation but where the dead variables are eliminated. We

elaborate on this in Section 2.7. It is future work to connect these two

results by validating the dead variable elimination to obtain the end-to-

end theorem even if dead variables are eliminated; doing so should be

straightforward.

The implementation of Boogie contains several optional transformations

and transformations for Boogie features not yet supported by our gener-

ated certificates. For instance, we do not support Boogie maps, for which

Boogie has separate transformations. As another example, we do not

support the validation for Boogie’s support for loop invariant inference

via abstract interpretation, which can be enabled via a command-line

option. Note that Boogie by default does not check that inferred loop

invariants are correct loop invariants and instead considers them to be

free loop invariants that are just assumed. Thus, to support Boogie’s loop

invariant inference, one would have to show that the inference infers only

correct loop invariants. Our subsets for CFGs and ASTs will be made

clear in Section 2.3 and Section 2.8, respectively. We support only the

default command-line options except for the type system encoding that

we discuss in Section 2.6.

2.2.3. Procedure Body Decomposition

For a subsequence of transformations, our goal is to automatically gen-

erate certificates which formally prove that the correctness of the target

procedure (or validity of the VC) implies the correctness of the source

procedure. This is equivalent to proving that if the target procedure has

no failing executions (or the VC is valid), then neither does the source

procedure. When tackling the proof of this goal for a subsequence of

transformations, we further break down the proof into smaller problems,

each focusing on a part of the source and target procedure body.

We must consider three kinds of source-target pairs: (1) an AST source

and a CFG target, (2) a CFG source and CFG target, and (3) a CFG

source and a VC target. We first discuss our approach for the case when

both the source and target are represented as CFGs and then show the

generalisation to the other two cases.

Relating a CFG source with a CFG target

For the most part, every block in the source CFG has a unique corre-

sponding block in the target CFG, and vice versa. However, there are

exceptions, for example, when (1) blocks are coalesced, (2) new blocks

2.2. High-Level Validation Approach 21

are introduced, or (3) blocks are removed. We ignore these exceptions in

this section. The presented approach can be generalised to the exceptions

and we will discuss how we handle them in later sections.

For every block 𝐵𝑠 in the source CFG and its corresponding block 𝐵𝑡 in

the target CFG, we prove two results that each relate the two blocks:

1. Local block lemmas: We relate executions that go through 𝐵𝑠 with

executions through 𝐵𝑡 . This result is proved in isolation from any

of the other blocks and thus all local block lemmas can be proved

in parallel.

2. Global block theorems: We relate executions starting from 𝐵𝑠 and

extending to the rest of the source CFG with executions starting

from 𝐵𝑡 and extending to the rest of the target CFG.

This decomposition separates command-level reasoning (local block

lemmas) from CFG-level reasoning (global block theorems). It enables

concise lemmas and proofs in Isabelle and makes each comprehensible to a

human. This separation also makes, for instance, the CFG-level reasoning

robust to changes that affect only the command-level reasoning.

The details of local block lemmas and global block theorems differ for

the different transformation subsequences. However, in all cases, the

essence of the lemmas is the same. Local block lemmas imply two key

properties if there are no failing executions through the target block from

a state 𝜎𝑡 : (1) there are no failing executions through the corresponding

source block from states related to 𝜎𝑡 , and (2) given a successful execution

through the source block starting from a state related to 𝜎𝑡 and ending in

a state 𝜎′
𝑠 , there must exist a corresponding successful execution through

the target block starting from 𝜎𝑡 and ending in a state related to 𝜎′
𝑠 . The

first property is necessary to ensure that the procedure is correct and

we use the second property to compose local block lemmas in order to

obtain the global block theorems.

Global block theorems generalise the first property ensured by local block

lemmas to entire CFGs: if there are no failing executions in the target

CFG starting from the target block from state 𝜎𝑡 (possibly extending

to the rest of the target CFG), then there are no failing executions in

the source CFG starting from any state related to 𝜎𝑡 . The soundness of

the transformation (i. e. the absence of failing executions in the target

CFG implies the absence of failing executions in the source CFG) follows

essentially from (1) the global block theorem for the entry block, and

(2) a proof showing that there is a related initial target state for any initial

source state.

Note that the described properties implied by the local block lemmas

and global block theorems essentially capture a forward simulation [74] [74]: Lynch et al. (1995), Forward and Back-
ward Simulations: I. Untimed Systems

between the source and target procedures. However, for cycle elimina-

tion and assignment elimination, our local block lemmas and global

block theorems use simulation techniques that go beyond traditional

forward simulations which construct a single target execution for a given

source execution. For cycle elimination, a looping source execution must

be justified by multiple non-looping target executions. For assignment

elimination, our approach tracks multiple target executions for a single

source execution in order to split the proof modularly. We will discuss

both of these in later sections.

22 2. Formally Validating a Verification Condition Generator

For the different transformation subsequences, the details of the local

block lemmas (and thus global block theorems) differ for various reasons.

In some cases one requires extra conditions on the input states or the

output states. For example, for the proof involving cycle elimination, we

may need to assume in certain cases that a loop invariant holds in the

input state or we may have to prove that the loop invariant holds in the

output state. Another difference in the local block lemmas is regarding

the existence of target executions. Above we presented the concept of a

local block lemma as requiring the existence of a single target execution for

every successful source execution. However, for assignment elimination,

the local block lemmas state a stronger result that requires proving the

existence of potentially infinitely many target executions. We will discuss

the reasons in Section 2.5.

Proving a global block theorem

To prove a global block theorem for a source block 𝐵𝑠 and corresponding

target block 𝐵𝑡 , we use the local block lemma relating 𝐵𝑠 and 𝐵𝑡 , and

the global block theorems of the successor blocks. This proof strategy

thus induces a set of dependencies between global block theorems. It is

crucial that these dependencies do not form cycles, otherwise one cannot

formally establish the global block theorem of the entry block, which is

the main global block theorem we want to finally prove. Isabelle (and

ITPs in general) guarantee that such circular reasoning does not occur,

because one can use a Isabelle lemma only if it already has been proved.

Thus, when generating certificates, we are forced by Isabelle to prove

the global block theorems in an order where before the theorem for a

block pair is proved, all the global block theorems for the corresponding

successors are proved. If the source and target CFGs are acyclic (which

is the case from cycle elimination onwards), one can do so using a

reverse-topological order (i. e. starting from the exit blocks, which have

no successors, and then moving backwards through the CFG). If the

source or the target CFG has cycles, then the order is more involved. In

this case, the intuition is to move backwards through the CFG and handle

cycles via induction proofs. One must distinguish whether the cycles in

the source and target CFG are in sync (e.g. for the CFG optimisations) or

not (for the subsequence including cycle elimination). We will discuss

the details in the respective sections.

The high-level proof idea for a global block theorem is the following

for the case where a single target execution simulates a given source

execution (the other cases are similar). To show the theorem in this case,

we assume the existence of a failing source execution (starting from a

source block 𝐵𝑠) and prove that this implies a failing target execution

(starting from the corresponding target block 𝐵𝑡). If the source execution

fails during the execution of 𝐵𝑠 , then we can use the corresponding

local block lemma to directly find a failing execution through 𝐵𝑡 , which

concludes the proof. Otherwise, the source execution successfully goes

through 𝐵𝑠 reaching some state 𝜎′
𝑠 and then will fail starting from a

successor 𝐵′
𝑠 of 𝐵𝑠 . In this case, we can use the local block lemma to

obtain a successful target execution 𝑒𝑡 through 𝐵𝑡 to reach a state related

to 𝜎′
𝑠 . Then, we can use the global block theorem of the successors (for

𝐵′
𝑠 and the corresponding target block 𝐵′

𝑡) and the failing execution from

2.2. High-Level Validation Approach 23

Figure 2.2: A snippet of an automatically generated Isabelle certificate for a Boogie program. The Isabelle

lemma in this snippet expresses a local block lemma relating a concrete source and target block as part of

assignment elimination. Lines 98-105 formally state the local block lemma and lines 106-112 form the proof

of the lemma. All applied tactics in the proof are built-in Isabelle tactics (such as the rule and simp tactics)

except for the passive_rel_tac tactic, which is a general custom tactic that we defined and that we use as

part of automatically generated assignment elimination certificates. The passive_rel_tac tactic itself applies

built-in Isabelle tactics.

𝐵′
𝑠 to prove the existence of a failing target execution 𝑒′𝑡 starting from

the successor 𝐵′
𝑡 . The composition of 𝑒𝑡 and 𝑒′𝑡 provides a failing target

execution from 𝐵𝑡 , which concludes the proof.

Relating an AST or VC with a CFG

We generalise our approach for relating source and target CFGs to relating

a source AST with a target CFG and a source CFG with a target VC. In the

former case, the local block lemmas relate a sequence of basic commands

in the AST with a block in the CFG. The global block theorems relate a

program point in the AST with a block in the CFG. For the latter case, we

exploit the fact that Boogie generates a separate verification condition

for each block [23]. In particular, we design our local block lemmas [23]: Barnett et al. (2005), Weakest-
precondition of unstructured programs

and global block theorems such that they relate CFG blocks with their

corresponding verification condition. We will discuss our certification of

the final generation of the VC in Section 2.6.

2.2.4. A Snippet of a Concrete Certificate in Isabelle

To make clearer how our generated Isabelle certificates look at a high

level, consider Figure 2.2, which shows a snippet of an Isabelle certificate

automatically generated by our tool for some input Boogie program.

In particular, this snippet shows a local block lemma (along with its

proof) relating a concrete source and target block as part of assignment

elimination. This entire snippet is automatically generated and Isabelle

successfully checks it (and the remainder of the certificate) automatically.

In our generated certificate, the proof of the global block theorem relating

the same blocks as part of assignment elimination uses this local block

lemma.

24 2. Formally Validating a Verification Condition Generator

2.2.5. Discussion of Transformations in Next Sections

In the remainder of this chapter, we will make the high-level ideas from

this section concrete for the different transformations applied by Boogie.

We do not present the transformations in the order that Boogie applies

them. Instead, we first discuss the details for the three most challenging

transformations (cycle elimination in Section 2.4, assignment elimination

in Section 2.5, and the final generation of the VC in Section 2.6) and how

we formally validate them. Since these transformations all operate solely

on control-flow graphs, we first present the formal semantics of control-

flow graphs in Section 2.3. After discussing these three most challenging

transformations, we discuss the CFG optimisations in Section 2.7. Finally,

we present the formal semantics for Boogie ASTs in Section 2.8, followed

by an overview of the AST-to-CFG transformation in Section 2.9.

2.3. A Formal Semantics for Boogie

Our automatically generated certificates crucially rely on a formal seman-

tics for Boogie programs. One of our contributions is the first such formal

semantics for a significant subset of Boogie programs that is mechanised

in Isabelle. Our semantics is based on the Boogie reference manual [1],[1]: Leino (2008), This is Boogie 2
the presentation of its type system [67], and the Boogie implementation[67]: Leino et al. (2010), A Polymorphic

Intermediate Verification Language: Design
and Logical Encoding

for reference [75]. Our Isabelle formalisation is available online [73].

[75]: Boogie Developers (n.d.), Boogie im-
plementation
[73]: Parthasarathy (2024), Boogie Seman-
tics and Certificate Metatheory Formalisa-
tion

As discussed in the previous section, Boogie uses two program represen-

tations: ASTs and CFGs. In terms of the semantics, the representation

affects only the control-flow elements (e.g. sequential composition, condi-

tional branching, loops), the rest remains the same (e.g. basic commands

such as assert commands). In this section, we present the semantics of

control-flow independent elements and present the semantics of CFGs

for the control flow. We will discuss the AST representation and its

semantics in Section 2.8.

2.3.1. The Boogie Language

Our supported Boogie subset for control-flow independent elements is

shown in Figure 2.3. A Boogie program consists of a list of background

declarations and a list of procedures.

Background and procedure declarations

Background declarations include axioms, uninterpreted (polymorphic)

functions, type constructors, global variables, and constants. The global

variables and constants represent the global data of a Boogie program.

Functions can be polymorphic as indicated by the type parameters ®𝑡. Type

constructor declarations include the constructor name 𝐶 and the number

of type parameters (e.g. type Field _ _ denotes a type constructor named

Field that takes two type arguments). Function declarations do not

provide a function interpretation (i. e. there is no function body) and

type constructor declarations do not provide interpretations for the

corresponding types. Axioms, defined via Boogie expressions, are used

2.3. A Formal Semantics for Boogie 25

BUnaryOp ∋ uop ::= − | !
BBinaryOp ∋ bop ::= == | != | + | − | ∗ | / | mod | ≤ | < | ≥ | > | && | || | ⇒ | ⇔

BExpr ∋ 𝑒 ::= 𝑥 | false | true | 𝑖 | uop(𝑒) | 𝑒 bop 𝑒 | if 𝑒 then 𝑒 else 𝑒 | 𝑓 [®𝜏](®𝑒) | old(𝑒) |
forall 𝑥 : 𝜏 :: 𝑒 | exists 𝑥 : 𝜏 :: 𝑒 | forall ⟨𝑡⟩ :: 𝑒 | exists ⟨𝑡⟩ :: 𝑒

BBasicCmd ∋ 𝑐 ::= assume 𝑒 | assert 𝑒 | 𝑥 := 𝑒 | havoc 𝑥

BType ∋ 𝜏 ::= int | bool | C ®𝜏 | 𝑡
BBackgroundDecl ∋ bgDecl ::= axiom 𝑒 | function 𝑓 [®𝑡](# „𝑥 : 𝜏) returns 𝜏′ | type 𝐶 #„ |

var 𝑥 : 𝜏 | const 𝑥 : 𝜏

BProcedureDecl ∋ procDecl ::= procedure 𝑝(# „𝑥 : 𝜏) returns (# „𝑦 : 𝜏)
requires 𝑒
ensures 𝑒
{ # „var 𝑧 : 𝜏 ; body}

BProg ∋ prog ::=
„

bgDecl;
„

procDecl

Figure 2.3: The control-flow independent syntax of our formalised Boogie subset. 𝑝 (procedure name) and 𝐶
(type constructor name) denote Boogie identifiers. 𝑥 and 𝑦 denote variables. 𝑖 denotes an integer constant. body
denotes a procedure body, which is either a CFG or AST over basic commands (CFG and AST control-flow

elements are not shown in the figure). Here, procedures have only one precondition and one postcondition for

the sake of presentation. Our Isabelle formalisation additionally supports specifying multiple preconditions

(resp. postconditions), which Boogie interprets as a single precondition (resp. postcondition) given by the

conjunction of the specified preconditions (resp. postconditions).

to constrain the possible function and type interpretations (and constants),

as we will make clearer later.
4

4: In practice, Boogie allows function

bodies that are treated as syntactic sugar

for an uninterpreted function with an

axiom stating that a function call evalu-

ates to the same value as its body for all

function arguments.

A procedure declaration includes parameter (
„𝑥 : 𝜏), result-variable (

„𝑦 : 𝜏),

and local-variable (
„𝑧 : 𝜏) declarations (the local data), a pre- and post-

condition, and a procedure body (represented as an AST or CFG).
5

5: Source-level procedure specifications

also include modifies clauses, declaring a

set of global variables the procedure may

modify, which are required to describe

the modular semantics of procedure calls.

Since we do not support procedure calls,

we need not consider modifies clauses.

We

discuss our formalisation of CFGs in Subsection 2.3.2, and will discuss

ASTs in a later section (Section 2.8 on page 79).

Types, expressions, basic commands

We support the primitive types int and bool. Moreover, we support types

obtained via declared type constructors, which we call uninterpreted
types; the sets of values inhabiting such types are constrained only via

Boogie axioms and assume commands. Moreover, types can contain type

variables (for instance, as part of the type signature of polymorphic

functions).

Boogie’s expression syntax is largely standard. Expressions include

variables, Boolean and integer literals, unary and binary expressions,

conditional expressions, and function calls 𝑓 [®𝜏](®𝑒). The arguments ®𝜏
to a function call 𝑓 [®𝜏](®𝑒) instantiate the type parameters in the corre-

sponding function declaration and are inferred by the type-checker; in

our formalisation, type parameters are always explicit. Less standard

expressions include old expressions old(𝑒) which evaluate the expres-

sion 𝑒 w.r.t. the current local data and the global data as it was in the

pre-state of the procedure execution. Boogie expressions also include

universal and existential value quantification (written forall 𝑥 : 𝜏 :: 𝑒

26 2. Formally Validating a Verification Condition Generator

and exists 𝑥 : 𝜏 :: 𝑒), as well as universal and existential type quantifica-

tion (written forall ⟨𝑡⟩ :: 𝑒 and exists ⟨𝑡⟩ :: 𝑒). In the latter, the type

variable 𝑡 is bound in 𝑒 and quantifies over closed Boogie types (i. e. types

that do not contain any type variables).

Note that Boogie’s evaluation of an expression 𝑒 is total if 𝑒 is well-typed.

That is, 𝑒 evaluates to a value if 𝑒 is well-typed, as we show in our

type soundness result for expressions (Subsection 2.3.6). In particular,

division and modulo by 0 are defined to be some unknown but fixed

value. Moreover, division by a nonzero integer is defined to be the

Euclidean division, since SMT solvers use the Euclidean division in this

case: Boogie maps integer divisions in an input program directly to

the built-in division used by SMT solvers in the generated verification

condition.

Basic commands form the single-steps of executions through a Boogie

CFG or AST. In a CFG, sequential composition is implicit in the list of

basic commands in a CFG basic block and further control flow (including

loops) is prescribed by CFG edges. Boogie’s basic commands are assumes,

asserts, assignments, and havocs. havoc 𝑥 nondeterministically assigns a

value matching the type of variable 𝑥 to 𝑥.

Unsupported features

The main Boogie features not supported by our CFG subset are maps,

other primitive types such as bitvectors, and procedure calls. Boogie maps

can be polymorphic and impredicative, i. e. one can define maps that

contain themselves in their domain. Giving a semantic model for maps

in general is nontrivial. However, it is possible to axiomatise maps in our

subset (via Boogie functions and axioms). We discuss maps in more detail

as part of future work in Section 2.12. Modelling bitvectors is simpler,

although maintaining full automation may require some additional work.

Adding support for procedure calls is conceptually simple but requires

engineering effort. In fact, Boogie desugars procedure calls into our

subset using the procedure’s specification.

2.3.2. Boogie CFGs

Our formalisation of a Boogie CFG uses the notion of a block identifier: each

basic block in the CFG is associated with a unique block identifier (in our

formalisation, block identifiers are natural numbers). More concretely,

a Boogie CFG 𝐺 is a triple (𝑏0 , 𝑉 , 𝐸), where 𝑏0 is the block identifier

for the entry basic block where executions start, 𝑉 is a partial mapping

from block identifiers to the list of basic commands contained in the

corresponding basic block, and 𝐸 represents the edges of 𝐺 via a partial

mapping from block identifiers to a list of block identifiers representing

the successors (semantically, execution after a basic block continues via

any of its successors nondeterministically). We use convenience functions

for the three components of a CFG 𝐺 = (𝑏0 , 𝑉 , 𝐸): (1) entry(𝐺) for 𝑏0,

(2) cmds(𝐺, 𝑏) for 𝑉(𝑏) (i. e. the commands contained in the basic block

identified by 𝑏), and (3) successors(𝐺, 𝑏) for 𝐸(𝑏) (i. e. the successors of

the basic block identified by 𝑏).

2.3. A Formal Semantics for Boogie 27

A triple (𝑏0 , 𝑉 , 𝐸) represents an actual CFG 𝐺 only if the domains of

𝑉 and 𝐸 contain the set of block identifiers corresponding to all basic

blocks in 𝐺, and the range of 𝐸 contains only block identifiers that occur

in the domains of 𝑉 and 𝐸. We explicitly check these constraints in

our certificates (they hold for all of the concrete CFGs that appear in

our certificates). For instance, when proving a global block theorem gbt
relating a source block 𝑏𝑆 and a target block 𝑏𝑇 , we need to ensure that

𝑉(𝑏𝑆) and 𝑉(𝑏𝑇) are both defined, otherwise we cannot use the local

block lemma relating the commands contained in 𝑏𝑆 and 𝑏𝑇 .

2.3.3. Operational Semantics

Values and state model

We formalise values in Boogie using the following algebraic data type:

′𝑎 val ≜ IntVal(intisa) | BoolVal(boolisa) | AbsVal(′𝑎)

There are three kinds of values: integers, Booleans, and abstract values.
We embed integer and Boolean values as their Isabelle counterparts (i. e.
in our mechanisation, intisa and boolisa in the above definition are the

Isabelle types for integers and Booleans, respectively). Abstract values

express the values for uninterpreted types that are obtained via type

constructors. Our value definition is parameterised by the carrier type
′𝑎

for the abstract values. That is, we do not fix up front how abstract values

should be represented. Each uninterpreted type is (indirectly) associated

with a non-empty subset of abstract values via a type interpretation map

T from the carrier type
′𝑎 to (single) uninterpreted types that have

no type variables (i. e. these types are closed); particular interpretations

of uninterpreted types can be obtained via different choices of type

interpretation T. We will show a concrete instantiation of the carrier type

and a corresponding type interpretation in Chapter 3.

One can understand Boogie programs in terms of the sets of possible exe-
cutions through each procedure body. Executions are (as usual) composed

of sequences of steps according to the semantics of basic commands and

paths through the CFG; these can be finite or infinite (representing a

non-terminating execution). A finite execution has one of three outcomes:

(1) the execution fails, because an assert 𝐴 command is reached in a state

not satisfying assertion 𝐴 or an exit block of the procedure is reached in a

state where the postcondition fails, or (2) the execution stops and goes to
magic, because an assume 𝐴 command is reached in a state not satisfying

𝐴, or (3) the execution succeeds and transitions to a state, because neither

of the first two cases occur.
6

The three outcomes are represented formally 6: For AST representations of the pro-

cedure body, one must additionally con-

sider loop invariants. In contrast in CFGs,

as we will see in Subsection 2.3.5, loop in-

variants are represented as assert com-

mands at the beginning of the corre-

sponding loop entry point.

by the following algebraic data type:

′𝑎 outcome ≜ F | M | N(′𝑎 state)

where (1) F denotes a failure outcome, (2) M denotes a magic outcome, and

(3) N(𝜎) denotes a normal outcome, where 𝜎 is the resulting Boogie state

(
′𝑎 state is the corresponding type representing such states that store

Boogie values of type
′𝑎 val). A Boogie state 𝜎 is a triple (os, gs, ls) of

partial mappings from variables to values for the old global state os (for

28 2. Formally Validating a Verification Condition Generator

the evaluation of old expressions), the (current) global state gs, and the

local state ls, respectively.

Expression evaluation

An expression 𝑒 evaluates to value 𝑣 in the state 𝜎 if the (big-step)

judgement (T,Λ,F),Ω ⊢ ⟨𝑒 , 𝜎⟩ ⇓ 𝑣 holds in the Boogie context (T,Λ,F)
and under the type substitution Ω. Analogously, a list of expressions es
evaluate to values vs in state 𝜎 if the judgement (T,Λ,F),Ω ⊢ ⟨es, 𝜎⟩ [⇓
] vs holds. A Boogie context Γ is a triple (T,Λ,F), where T is a type
interpretation (as above), Λ is a variable context that is given by a pair (𝐺, 𝐿)
of type declarations for the global (𝐺) and local (𝐿) data, and Fis a function
interpretation, which maps each function name to a semantic function

mapping a list of types (i. e. the type parameter instantiations) and a list

of argument values to a return value. We use projection functions for

the three components of a Boogie context Γ: TypeInterp(Γ) for the type

interpretation, Vars(Γ) for the variable context, and FunInterp(Γ) for the

function interpretation. A type substitution Ω maps type variables to

types.

The two judgements (for the evaluation of a single expression and a list

of expressions) are defined mutually and the corresponding rules are

shown in Figure 2.4 (evaluation of a single expression) and Figure 2.5

(evaluation of a list of expressions). The rule for variable lookup is defined

in terms of the function lookup((𝐺, 𝐿), (os, gs, ls), 𝑥), which returns ls(𝑥)
if 𝑥 belongs to the local data (i. e. 𝑥 is recorded in the type declarations

𝐿 for the local data) and gs(𝑥) otherwise.
7

This models the fact that7: (𝐺, 𝐿) is a variable context, where 𝐺

and 𝐿 are the type declarations for the

global and local data, respectively.

local variables can shadow global variables.
8

In the rule for literals, 𝑙𝑒

8: Note that in our generated certificates,

our Isabelle embedding of Boogie pro-

grams gives unique names to variables

in the presence of shadowing, which sim-

plifies the task of certificate generation.

It is future work to show that such an em-

bedding captures an embedding where

shadowing is reflected explicitly.

and 𝑙𝑣 denote literal expressions and the corresponding literal values,

respectively. The rules for value quantification are defined in terms of

typT(𝑣), which maps a value 𝑣 to its type w.r.t. the type interpretation T

for abstract values.

The quantification of types quantifies over every possible closed type

(i. e. types that do not contain type variables). For example, the following

rule expresses when a universal type quantification evaluates to true (the

type variable 𝑡 is bound to the quantified type and may occur in 𝑒):

∀𝜏. closed(𝜏) =⇒ Γ,Ω(𝑡 ↦→ 𝜏) ⊢ ⟨𝑒 , 𝜎⟩ ⇓ BoolVal(true)
Γ,Ω ⊢ ⟨forall ⟨𝑡⟩ :: 𝑒 , 𝜎⟩ ⇓ BoolVal(true)

The premise requires one to show that the expression 𝑒 reduces to true

for every possible type 𝜏 that is closed.

Type quantification and type declarations

Note that our semantics does not depend on the type constructors

declared in a program: the semantics of quantification over types

also considers types obtained via undeclared type constructors. As

we will show in Section 2.6, the VC generated by Boogie reflects this

semantics. Moreover, in Chapter 3, we will show that this semantics

is sufficient to formally justify the translation from a Boogie front-end

language (i. e. Viper) to Boogie.

As an alternative, one could consider a semantics that quantifies only

2.3. A Formal Semantics for Boogie 29

Unquantified expressions

lookup(Λ, 𝜎𝑣 , 𝑥) = 𝑣

(T,Λ,F),Ω ⊢ ⟨𝑥, 𝜎𝑣⟩ ⇓ 𝑣 Γ,Ω ⊢ ⟨𝑙𝑒 , 𝜎⟩ ⇓ 𝑙𝑣

Γ,Ω ⊢ ⟨𝑒 , 𝜎⟩ ⇓ 𝑣′ uop(𝑣′) = 𝑣

Γ,Ω ⊢ ⟨uop(𝑒), 𝜎⟩ ⇓ 𝑣

Γ,Ω ⊢ ⟨𝑒1 , 𝜎⟩ ⇓ 𝑣1

Γ,Ω ⊢ ⟨𝑒2 , 𝜎⟩ ⇓ 𝑣2

𝑣1 bop 𝑣2 = 𝑣

Γ,Ω ⊢ ⟨𝑒1 bop 𝑒2 , 𝜎⟩ ⇓ 𝑣

Γ,Ω ⊢ ⟨𝑒1 , 𝜎⟩ ⇓ BoolVal(true)
Γ,Ω ⊢ ⟨𝑒2 , 𝜎⟩ ⇓ 𝑣

Γ,Ω ⊢ ⟨if 𝑒1 then 𝑒2 else 𝑒3 , 𝜎⟩ ⇓ 𝑣

Γ,Ω ⊢ ⟨𝑒1 , 𝜎⟩ ⇓ BoolVal(false)
Γ,Ω ⊢ ⟨𝑒3 , 𝜎⟩ ⇓ 𝑣

Γ,Ω ⊢ ⟨if 𝑒1 then 𝑒2 else 𝑒3 , 𝜎⟩ ⇓ 𝑣

(T,Λ,F),Ω ⊢ ⟨®𝑒 , 𝜎⟩ [⇓] ®𝑣′
F(𝑓) = 𝑓 𝑓 (map(𝜆𝑡. substT(Ω, 𝑡), ®𝜏), ®𝑣′) = 𝑣

(T,Λ,F),Ω ⊢ ⟨ 𝑓 [®𝜏](®𝑒), 𝜎⟩ ⇓ 𝑣

Γ,Ω ⊢ ⟨𝑒 , (os, os, ls)⟩ ⇓ 𝑣

Γ,Ω ⊢ ⟨old(𝑒), (os, gs, ls)⟩ ⇓ 𝑣

Value quantification

∀𝑤. typT(𝑤) = substT(Ω, 𝜏) =⇒ (T, (𝐺, 𝐿(𝑥 ↦→ 𝜏)),F),Ω ⊢ ⟨𝑒 , (os, gs, ls(𝑥 ↦→ 𝑤))⟩ ⇓ BoolVal(true)
(T, (𝐺, 𝐿),F),Ω ⊢ ⟨forall 𝑥 : 𝜏 :: 𝑒 , (os, gs, ls)⟩ ⇓ BoolVal(true)

typT(𝑤) = substT(Ω, 𝜏) (T, (𝐺, 𝐿(𝑥 ↦→ 𝜏)),F),Ω ⊢ ⟨𝑒 , (os, gs, ls(𝑥 ↦→ 𝑤))⟩ ⇓ BoolVal(false)
(T, (𝐺, 𝐿),F),Ω ⊢ ⟨forall 𝑥 : 𝜏 :: 𝑒 , (os, gs, ls)⟩ ⇓ BoolVal(false)

typT(𝑤) = substT(Ω, 𝜏) (T, (𝐺, 𝐿(𝑥 ↦→ 𝜏)),F),Ω ⊢ ⟨𝑒 , (os, gs, ls(𝑥 ↦→ 𝑤))⟩ ⇓ BoolVal(true)
(T, (𝐺, 𝐿),F),Ω ⊢ ⟨exists 𝑥 : 𝜏 :: 𝑒 , (os, gs, ls)⟩ ⇓ BoolVal(true)

∀𝑤. typT(𝑤) = substT(Ω, 𝜏) =⇒ (T, (𝐺, 𝐿(𝑥 ↦→ 𝜏)),F),Ω ⊢ ⟨𝑒 , (os, gs, ls(𝑥 ↦→ 𝑤))⟩ ⇓ BoolVal(false)
(T, (𝐺, 𝐿),F),Ω ⊢ ⟨exists 𝑥 : 𝜏 :: 𝑒 , (os, gs, ls)⟩ ⇓ BoolVal(false)

Type quantification

∀𝜏. closed(𝜏) =⇒ Γ,Ω(𝑡 ↦→ 𝜏) ⊢ ⟨𝑒 , 𝜎⟩ ⇓ BoolVal(true)
Γ,Ω ⊢ ⟨forall ⟨𝑡⟩ :: 𝑒 , 𝜎⟩ ⇓ BoolVal(true)

closed(𝜏) Γ,Ω(𝑡 ↦→ 𝜏) ⊢ ⟨𝑒 , 𝜎⟩ ⇓ BoolVal(false)
Γ,Ω ⊢ ⟨forall ⟨𝑡⟩ :: 𝑒 , 𝜎⟩ ⇓ BoolVal(false)

closed(𝜏) Γ,Ω(𝑡 ↦→ 𝜏) ⊢ ⟨𝑒 , 𝜎⟩ ⇓ BoolVal(true)
Γ,Ω ⊢ ⟨exists ⟨𝑡⟩ :: 𝑒 , 𝜎⟩ ⇓ BoolVal(true)

∀𝜏. closed(𝜏) =⇒ Γ,Ω(𝑡 ↦→ 𝜏) ⊢ ⟨𝑒 , 𝜎⟩ ⇓ BoolVal(false)
Γ,Ω ⊢ ⟨exists ⟨𝑡⟩ :: 𝑒 , 𝜎⟩ ⇓ BoolVal(false)

Figure 2.4: Rules for the evaluation of expressions (defined mutually with the evaluation of a list of expressions

shown in Figure 2.5). uop and bop denote the semantic interpretation of a unary operation uop and binary

operation bop, respectively. substT(Ω, 𝜏) denotes the substitution of type variables in the type 𝜏 according to

the type substitution Ω. In our Isabelle mechanisation, we track bound variables differently compared to

other variables, which leads to slightly different rules for variable lookups and value quantification, which we

ignore here for the sake of presentation.

30 2. Formally Validating a Verification Condition Generator

Γ,Ω ⊢ ⟨[], 𝜎⟩ [⇓] []

Γ,Ω ⊢ ⟨𝑒 , 𝜎⟩ ⇓ 𝑣
Γ,Ω ⊢ ⟨es, 𝜎⟩ [⇓] vs

Γ,Ω ⊢ ⟨(𝑒 :: es), 𝜎⟩ [⇓] (𝑣 :: vs)

Figure 2.5: Rules for the evaluation of a list of expressions (defined mutually with the evaluation of a single

expression shown in Figure 2.4). The term [] denotes the empty list, and the term 𝑒 :: es denotes the list whose

head and tail are given by 𝑒 and es, respectively.

over types that could be obtained via declared type constructors. We

conjecture that the VC generated by Boogie also respects this semantics

(we have not formally proved this). We decided against this alternative

for two reasons. First, the alternative would require reasoning about a

condition capturing solely the declared type constructors, which could

be cumbersome. Second, while the relevant types for a program are

expressible via the declared type constructors, not all types expressed

via declared type constructors are relevant. For example, Boogie front-

ends may use a type constructor type Field _ to express fields for a

heap where the type argument expresses the type of values stored at

the field. The concrete type Field (Field int) is an irrelevant type,

since front-ends typically do not allow storing fields into fields. Thus,

even with the alternative quantification, which quantifies only over

types that could be obtained via declared type constructors, one must

still consider irrelevant types.

We conjecture that one can prove a relationship between these two

alternatives. For example, if one restricts interpretations in our version

(that considers all possible closed types) to collapse all types that

cannot be expressed via the declared type constructors to an existing

type (e.g. the Booleans), then the two alternatives might be semantically
equivalent w.r.t. the correctness of a Boogie programs (we have not

proved this result). This would mean in this case that exchanging one

alternative for the other would not affect whether a Boogie program

is correct.

In general, expression evaluation is possible only for well-typed ex-

pressions; we also formalise Boogie’s type system and (for the first

time) prove its type soundness for expressions in Isabelle as we discuss

in Subsection 2.3.6.

Command and CFG reduction

The (big-step) judgementΓ ⊢ ⟨𝑐, 𝑠⟩ → 𝑠′ defines when a basic command 𝑐

reduces in outcome 𝑠 to outcome 𝑠′ w.r.t. Boogie contextΓ.
9

This reduction9: In our formalisation, this judgement

additionally takes a type substitution

as an additional parameter (like the ex-

pression evaluation judgement). This

type substitution is useful to model type

parameters in the procedure signature.

Since our certificate generation does not

support type parameters in procedure

signatures, we omit them here in the

semantics for the sake of presentation.

is lifted to a list of basic commands cs to model the semantics of a single

execution through a CFG block via the judgement Γ ⊢ ⟨cs, 𝑠⟩ [→] 𝑠′. The

rules are shown in Figure 2.6 (basic command) and Figure 2.7 (list of basic

commands). Assignment reduces only if the value to be assigned has the

right type, i. e. assignment preserves well-typed states. This condition

always holds for well-typed programs, but makes some reasoning easier

since it ensures that assignments preserve the well-typedness of states

without requiring a well-typedness assumption. The rules for assignment

and havoc rely on lookup𝑇(Λ, 𝑥) that maps the variable 𝑥 to its declared

2.3. A Formal Semantics for Boogie 31

Γ, ∅ ⊢ ⟨𝑒 , 𝜎⟩ ⇓ true

Γ ⊢ ⟨assert 𝑒 ,N(𝜎)⟩ → N(𝜎)
Γ, ∅ ⊢ ⟨𝑒 , 𝜎⟩ ⇓ BoolVal(false)
Γ ⊢ ⟨assert 𝑒 ,N(𝜎)⟩ → F

Γ, ∅ ⊢ ⟨𝑒 , 𝜎⟩ ⇓ true

Γ ⊢ ⟨assume 𝑒 ,N(𝜎)⟩ → N(𝜎)
Γ, ∅ ⊢ ⟨𝑒 , 𝜎⟩ ⇓ BoolVal(false)
Γ ⊢ ⟨assume 𝑒 ,N(𝜎)⟩ → M

Γ, ∅ ⊢ ⟨𝑒 , 𝜎⟩ ⇓ 𝑣
lookup𝑇(Λ, 𝑥) = typT(𝑣)
𝜎′ = update(Λ, 𝜎, 𝑥, 𝑣)

(T,Λ,F) ⊢ ⟨𝑥 := 𝑒 ,N(𝜎)⟩ → N(𝜎′)

lookup𝑇(Λ, 𝑥) = typT(𝑣)
𝜎′ = update(Λ, 𝜎, 𝑥, 𝑣)

(T,Λ,F) ⊢ ⟨havoc 𝑥,N(𝜎)⟩ → N(𝜎′)

Γ ⊢ ⟨𝑐,M⟩ → M Γ ⊢ ⟨𝑐, F⟩ → F

Figure 2.6: Rules for the reduction of basic commands.

Γ ⊢ ⟨[], 𝑠⟩ [→] 𝑠

Γ ⊢ ⟨𝑐, 𝑠⟩ → 𝑠′′

Γ ⊢ ⟨cs, 𝑠′′⟩ [→] 𝑠′

Γ ⊢ ⟨(𝑐 :: 𝑐𝑠), 𝑠⟩ [→] 𝑠′

Figure 2.7: Rules for the reduction of lists of basic commands.

type w.r.t. the variable context Λ (if 𝑥 is recorded in Λ, otherwise

lookup𝑇(Λ, 𝑥) would not be defined), and on update(Λ, 𝜎, 𝑥, 𝑣), which

returns the state 𝜎 where 𝑥 is updated to 𝑣 (ensuring that the local state

is updated if 𝑥 is local and otherwise the global state is updated).

The operational semantics of CFGs is modelled by the (small-step)

judgement Γ, 𝐺 ⊢ 𝛿 →CFG 𝛿′, expressing that the CFG configuration 𝛿
reduces to configuration 𝛿′ in the CFG 𝐺 w.r.t. the Boogie context Γ in a

single step; the rules are shown in Figure 2.8. A CFG configuration is either

active or final. An active configuration is given by a tuple (inl(𝑏), 𝑠), where

𝑏 is the block identifier indicating the current position of the execution

and 𝑠 is the current outcome. A final configuration consists of a tuple

(inr(()), 𝑠) for outcome 𝑠 (and unit value ()) and is reached at the end of a

block that has either no successors, or is in a magic or failure outcome.

We derive two judgements from this single-step judgement for expressing

an execution that performs multiple reduction steps. First, Γ, 𝐺 ⊢ 𝛿 →∗
CFG

𝛿′ denotes the reflexive-transitive closure. That is, 𝛿′ is reached from 𝛿
via zero or more reduction steps. Second, Γ, 𝐺 ⊢ 𝛿 →𝑖

CFG 𝛿′ expresses

that 𝛿′ is reached from 𝛿 in precisely 𝑖 reduction steps (𝑖 ∈ ℕ).

2.3.4. Procedure Correctness

A procedure is correct if for any well-formed type and function interpre-

tations, the procedure body has no failing executions in any state 𝜎 that

(1) satisfies the axioms when restricted to its constants (i. e. the state 𝜎
where only the constants are retained satisfies the axioms),

10
(2) satisfies 10: Boogie does not allow global vari-

ables in axioms
the precondition, and (3) is well-typed w.r.t. the variable declarations.

This is a partial correctness semantics; a procedure body whose executions

32 2. Formally Validating a Verification Condition Generator

cmds(𝐺, 𝑏) = cs 𝑏′ ∈ successors(𝐺, 𝑏)
Γ ⊢ ⟨cs,N(𝜎)⟩ [→] N(𝜎′)

Γ, 𝐺 ⊢ (inl(𝑏),N(𝜎)) →CFG (inl(𝑏′),N(𝜎′))

cmds(𝐺, 𝑏) = cs successors(𝐺, 𝑏) = ∅
Γ ⊢ ⟨cs,N(𝜎)⟩ [→] N(𝜎′)

Γ, 𝐺 ⊢ (inl(𝑏),N(𝜎)) →CFG (inr(()),N(𝜎′))
cmds(𝐺, 𝑏) = cs

Γ ⊢ ⟨cs,N(𝜎)⟩ [→] M

Γ, 𝐺 ⊢ (inl(𝑏),N(𝜎)) →CFG (inr(()),M)

cmds(𝐺, 𝑏) = cs
Γ ⊢ ⟨cs,N(𝜎)⟩ [→] F

Γ, 𝐺 ⊢ (inl(𝑏),N(𝜎)) →CFG (inr(()), F)

Figure 2.8: Rules for the reduction of CFGs.

never leave a loop is trivially correct provided that no intermediate

assert commands fail.

The following formal correctness definition for a Boogie procedure 𝑝

w.r.t. global declarations decls reflects this notion of correctness directly

(decls includes declarations of functions, axioms, global variables and

constants):

Definition 2.3.1 (Correctness of a procedure)

procCorrect(decls, 𝑝) ≜ ∀T,F, gs, ls.

©«
(∀𝑡. closed(𝑡) ⇒ ∃𝑣. typT(𝑣) = 𝑡) ∧
funInterpWellTy(T, functions(decls),F) ∧
varMappingWellTy(T, consts(decls)@globals(decls), 𝑝, gs, ls) ∧
axiomSat(T,F, consts(decls), axioms(decls), gs)

ª®®®¬ ⇒
let 𝜎0 = (gs, gs, ls) in
let Λ = (consts(decls)@globals(decls), params(𝑝)@results(𝑝)@locals(𝑝)) in
let Γ = (T,Λ,F) in
Γ, ∅ ⊢ ⟨pre(𝑝),N(𝜎0)⟩ ⇓ BoolVal(true) ⇒
bodyCorrect(Γ, body(𝑝), post(𝑝), 𝜎0)

The first two conjuncts in the left-hand side formalise when the (univer-

sally quantified) type interpretation Tand function interpretation Fare

well-formed: The type interpretation must inhabit every uninterpreted

closed type and the function interpretation must be well-typed w.r.t. the

declared function signatures (e.g. every declared function must have an

interpretation that given arguments of the declared argument types re-

turns a value of the declared return type). We require the well-formedness

of type interpretations in our validation of VC generation, as we will

discuss in Subsection 2.6.3 on page 66. We require the well-formedness

of function interpretations to prove type soundness, as we will discuss

in Subsection 2.3.6 on page 35.

The definition universally quantifies over the global state gs and the

local state ls, which are constrained to be well-typed w.r.t. the variable

declarations (via varMappingWellTy). Moreover, gs is constrained to satisfy

the axioms when restricted to the constants (via axiomSat).11 The initial11: Note that there is no relationship be-

tween the local state and the axioms,

since the axioms cannot refer to local

variables.

state 𝜎0 is then constructed via these components where the old global

state matches the global state, since they are the same at the beginning of

a procedure execution.

2.3. A Formal Semantics for Boogie 33

In the definition, Γ is the Boogie context that is used for the judgements

in the operational semantics. Its variable context Λ is constructed directly

via the constant and global variable declarations for the global data, and

all the variable declarations associated with the procedure for the local

data.

Finally, the conclusion bodyCorrect(Γ, body(𝑝), post(𝑝), 𝜎0) expresses that

the body of procedure 𝑝 has no failing executions when starting in the

state 𝜎0 w.r.t. context Γ. This includes that the postcondition post(𝑝) is

satisfied whenever the procedure body finishes its execution. Since the

body can be represented either via a CFG or an AST, bodyCorrect is a

parameter of our procedure correctness definition, which we instantiate

in two separate ways for the two representations. We will discuss the

AST instantiation for bodyCorrect in Section 2.8. The CFG instantiation

for bodyCorrect is given by:

Definition 2.3.2 (Correctness of a CFG body)

bodyCorrectCFG(Γ, 𝐺, post, 𝜎) ≜
∀𝑟, 𝑠′. Γ, 𝐺 ⊢ (inl(entry(𝐺)),N(𝜎)) →∗

CFG (𝑟, 𝑠′) ⇒
𝑠′ ≠ F ∧
(𝑟 = inr(()) ⇒ ∀𝜎′. 𝑠′ = N(𝜎′) ⇒ Γ, ∅ ⊢ ⟨post,N(𝜎′)⟩ ⇓ BoolVal(true))

where 𝐺 is a CFG and entry(𝐺) is the entry block of 𝐺.

The postcondition must be satisfied only if a final configuration is reached

normally, while failing states must be unreachable.

2.3.5. Boogie Program Examples

We now illustrate two Boogie programs to make our formal semantics

more intuitive. The first one focuses on the procedure body and control

flow, while the second one focuses on global declarations and Boogie’s

type system. We will use the first example as a running example for the

remainder of this chapter.

Running example

Figure 2.9 shows a procedure in source code (on the left) and the CFG

representation of its body (on the right). i and j are local variables and

the pre- and postconditions are trivial (i. e. true). We assume that there

are no background declarations. We will use the CFG representation as

a running example for the transformations whose source procedure is

represented as a CFG.

The source code has a while-loop with a classical Floyd-Hoare-style

inductive invariant. The invariant is represented implicitly in the CFG

representation via an assert command at the loop head block 𝐵1. This

captures the fact that the invariant must hold on entry of the loop and

at the beginning and end of every loop iteration. The CFG has infinite

executions: those which start from any state in which i is negative.

Executions starting from a state in which i is zero go to magic due to

the initial assume command in block 𝐵0; they do not reach the loop.

34 2. Formally Validating a Verification Condition Generator

procedure procRunning()
requires true;
ensures true;

{
var i: int;
var j: int;
assume i != 0;
j := 0;
while(i != 0)
invariant
j >= 0 && (i == 0 ⇒ j > 0);

{
if(i < 5)
{
j := j+1;

}
i := i-1;

}
assert j > 0;

}

assume i != 0
j := 0

𝐵0

assert j >= 0 && (i == 0⇒ j > 0) 𝐵1

assume i != 0 𝐵2

assume i < 5
j := j+1

𝐵3

assume 5 <= i 𝐵4

i := i-1 𝐵5

assume i == 0 𝐵6

assert j > 0 𝐵7

Figure 2.9: Running example procedure shown on the left and the CFG representation of its body shown on

the right.

The procedure is correct (i. e. has no failing executions): all other initial

states will result in executions that satisfy the loop invariant and the final

assert command. If we removed the initial assume in block 𝐵0, however,

there would be failing executions: the loop invariant check would fail if i

were initially zero.

Example with background declarations

Figure 2.10 shows a Boogie program with background declarations,

polymorphism, universal type quantification, and universal value quan-

tification. The program declares two type constructors: ref and List to

represent references and lists, respectively. The first type argument for

List is intended to reflect the values stored in the list. Recall that type

constructors in Boogie do not provide any interpretation for the types;

the declared functions and axioms restrict the possible interpretations,

and correctness of a Boogie program must be guaranteed under any

well-formed type and function interpretation.

In Figure 2.10, the intention for the polymorphic function elem is to check

whether an element is in a list, and the intention for the polymorphic

function cons is to prepend an element to a list. As for the type construc-

tors, these function declarations on their own do not define a function

interpretation. The two axioms in Figure 2.10 restrict the possible interpre-

tations by expressing when elem holds if the list is constructed via cons.

Here, universal type quantification is used to express a condition on any

possible type of values contained in the list. These two axioms on their

own do not force cons to model prepending an element to a list; more

axioms would be needed. In particular, the axioms allow cons to add the

2.3. A Formal Semantics for Boogie 35

type ref;
type List _;

const null: ref;

function elem<T>(x: T, xs: List T) : bool;
function cons<T>(x: T, xs: List T) : List T;

axiom (forall <T> :: (forall x: T, xs: List T :: elem(x, cons(x, xs))));
axiom (forall <T> :: (forall x: T, y: T, xs: List T :: x != y ⇒
elem(x, cons(y, xs)) == elem(x, xs)));

procedure p(xs: List ref) returns (ys: List ref)
requires !elem(null, xs);
ensures !elem(null, ys);
ensures (forall r: ref :: elem(r, xs) ⇒ elem(r, ys));

{
var y: ref;
var z: ref;
assume y != null;
assume z != null;
ys := cons(y, cons(z, xs));

}

Figure 2.10: Boogie program illustrating the use of background declarations and Boogie’s type system. Note

that the procedure has two postcondition clauses, which is semantically the same as conjoining both clauses.

element anywhere in the list (not necessarily at the beginning). For the

correctness of this program, the two declared axioms are sufficient.

The specification of procedure p in Figure 2.10 expresses that if the input

list does not contain the reference null (which is modelled via a constant

declaration), then neither does the output list and the elements of the

input list are a subset of those of the output list. The procedure body of p

satisfies this specification by cons-ing two nondeterministically chosen

references that are guaranteed to be non-null (the assume commands

ensure that the values are non-null).

The Boogie program in Figure 2.10 is correct. Both axioms are necessary

to ensure correctness. For instance, if the first axiom were omitted, then

the correctness of the Boogie program would also have to consider type

and function interpretations where elem(y,xs) holds (where y matches

the value provided by the local variable declaration in procedure p) but

elem(y, cons(y,cons(z,xs))) does not. As a result, there would be

type and function interpretations under which the postcondition is not

guaranteed to hold, and thus the Boogie program would not be correct.

2.3.6. Type Soundness of Expressions

For some of our generated certificates, we require that type soundness
holds for Boogie expressions. That is, if a Boogie expression 𝑒 is well-

typed and has type 𝜏, then 𝑒 evaluates to some value of type 𝜏. Boogie’s

type system for expressions has been presented on paper before [67], but [67]: Leino et al. (2010), A Polymorphic
Intermediate Verification Language: Design
and Logical Encoding

type soundness has not been formally proved before. We formally prove

36 2. Formally Validating a Verification Condition Generator

type soundness of Boogie expressions in Isabelle. Moreover, we develop

an approach to automatically prove in Isabelle that a concrete expression

𝑒 is well-typed such that we can then use our type soundness result to

obtain that 𝑒 reduces to a value of the corresponding type.

We formally define the typing judgement 𝐹,Δ ⊢ 𝑒 : 𝜏, which expresses

that 𝑒 has type 𝜏 w.r.t. function declarations 𝐹 and a type environment Δ
(a partial mapping from variable names to types). The type soundness

theorem that we prove is given by:

Theorem 2.3.1 (Type Soundness of Expressions) Let (T,Λ,F) be an
arbitrary Boogie context and let Ω be an arbitrary type substitution. Then, if

1. 𝐹, (𝜆𝑥. lookup𝑇(Λ, 𝑥)) ⊢ 𝑒 : 𝜏
2. funInterpWellTy(T, 𝐹,F)
3. wfTyFunDecls(𝐹)
4. wfTyVarCtxt(Ω,Λ)
5. wfTyExpr(Ω, 𝑒)
6. stateWellTy(T,Λ,Ω, 𝜎)

then: ∃𝑣. (T,Λ,F),Ω ⊢ ⟨𝑒 , 𝜎⟩ ⇓ 𝑣 ∧ typT(𝑣) = substT(Ω, 𝜏)

The first assumption is the typing assumption, where the type environ-

ment is derived from the variable context Λ. The other five assumptions

ensure that (1) the function interpretation Frespects the types in the func-

tion declarations (via funInterpWellTy), (2) specified types in a function

declaration contain only type variables specified by the declaration (via

wfTyFunDecls), (3) the variable context Λ contains only type variables that

appear in the domain of the type substitution Ω (via wfTyVarCtxt), (4) the

expression 𝑒 contains only type variables that appear in the domain of the

type substitution Ω (via wfTyExpr), and (5) the state 𝜎 respects the types

declared in the variable context (via stateWellTy). The conclusion states

the type soundness result, where the type of the value that the expression

reduces to is given by substT(Ω, 𝜏), which denotes the application of the

type substitution Ω to type 𝜏.

Our rules for defining the typing judgement 𝐹,Δ ⊢ 𝑒 : 𝜏 conceptually

match those from Leino and Rümmer [67]. All rules are standard except[67]: Leino et al. (2010), A Polymorphic
Intermediate Verification Language: Design
and Logical Encoding

for the typing rule for equality and disequality given by:

bop ∈ {==, !=} 𝐹,Δ ⊢ 𝑒1 : 𝜏1 𝐹,Δ ⊢ 𝑒2 : 𝜏2

substT(Ω, 𝜏1) = substT(Ω, 𝜏2)
𝐹,Δ ⊢ 𝑒1 bop 𝑒2 : bool

So, 𝑒1 and 𝑒2 need not have the same type in order for their (dis)equality to

be well-typed. Instead, 𝑒1 and 𝑒2 need to have types 𝜏1 and 𝜏2, respectively,

such that there is some type substitutionΩ under which 𝜏1 and 𝜏2 agree.

The motivation for this rule is to be able to type expressions such as:
12

12: This particular expression pattern is

used in Boogie programs generated by

Viper. forall ⟨𝑡⟩ :: forall 𝑓 : Field 𝑡 :: 𝑓 != 𝑔 ⇒ 𝑒

where 𝑔 has, for instance, type Field int. Here 𝑓 != 𝑔 is well-typed,

because, the type substitution [𝑡 ↦→ int] serves as a witness for the

above rule. Note that the semantics of type quantification also considers

instantiations of 𝑡 for which 𝑡 ≠ int and thus 𝑓 and 𝑔 do not have the

2.4. Cycle Elimination 37

same type. In such a case 𝑓 != 𝑔 evaluates to true in the semantics, since

values of different types are always different.

The rule for (dis)equality is the main challenge for the automation of

well-typedness proofs for concrete Boogie expressions, since one must

provide a correct type substitution for each (dis)equality. We solve this

in our instrumented Boogie verifier implementation by providing a hint

that has the same structure as the Boogie expression and where the nodes

corresponding to (dis)equalities contain the type variable substitution

witnesses. We are able to extract these witnesses directly from Boogie’s

type inference implementation via a lightweight instrumentation of the

existing Boogie verifier implementation. In our generated certificates,

we provide these hints to an Isabelle tactic that we developed, which

automatically proves that an expression is well-typed.

2.4. Cycle Elimination

In this section, we present our certificate generation approach for the

transformation subsequence in the Boogie verifier consisting of the

cycle elimination transformation, the pre- and postcondition insertion

transformation, and the empty block insertion transformation (this is

the certificate connecting procedure 𝑃3 with procedure 𝑃6 in Figure 2.1

on page 17). For the sake of presentation, we will first focus on cycle

elimination, which is by far the most challenging among the three

transformations, and then at the end discuss how we include the other

two transformations. Cycle elimination is challenging as it substantially

changes the executions in the CFG (going from looping to non-looping

executions), inserts additional nondeterministic assignments and assume

commands, and must do so correctly for arbitrary (reducible) nested loop

structures, which can include unstructured control flow (e.g. jumps out

of loops).

2.4.1. Cycle Elimination Overview

Cycle elimination applies to every loop head block identified by Boogie’s

implementation and any back edges (following standard definitions for

reducible CFGs [76, 77]). Intuitively, a loop head is the entry block for [76]: Hecht et al. (1972), Flow Graph Re-
ducibility
[77]: Hecht et al. (1974), Characterizations
of Reducible Flow Graphs

a loop and a back edge is an edge from a block within a loop back to

a corresponding loop head. Figure 2.11 illustrates the transformation’s

effect on our running example. Block 𝐵1 is the only loop head here, and

the edge from 𝐵5 to it is the only back edge (completing looping paths

via 𝐵2 and 𝐵3 or 𝐵2 and 𝐵4). An assert 𝐴 statement starting a loop head

(like 𝐵1) is interpreted as declaring 𝐴 to be the loop invariant.
13

Cycle 13: In general, multiple asserts at the

beginning of a loop head may form the

invariant (in such a case, the conjunction

of the corresponding expressions forms

the invariant).

elimination performs the following four steps:

1. Accumulate a set 𝑋𝐻 of all (local and global) variables assigned-to
on any looping path from the loop head back to itself. In our example,

𝑋𝐻 is {i, j}.

2. Move the assert 𝐴 statement declaring a loop invariant (if any)

from the loop head to the end of each preceding block (in our example:

𝐵0 and 𝐵5).

38 2. Formally Validating a Verification Condition Generator

assume i != 0
j := 0

𝐵0

assert 𝐴 𝐵1

assume i != 0 𝐵2

assume i < 5
j := j+1

𝐵3 assume 5 <= i 𝐵4

i := i-1 𝐵5

assume i == 0
assert j > 0

𝐵6

assume i != 0
j := 0
assert 𝐴

𝐵′
0

havoc i,j
assume 𝐴

𝐵′
1

assume i != 0 𝐵′
2

assume i < 5
j := j+1

𝐵′
3 assume 5 <= i 𝐵′

4

i := i-1
assert 𝐴
assume false

𝐵′
5

assume i == 0
assert j > 0

𝐵′
6

Figure 2.11: Cycle elimination applied to the running example (source is left, target is right). The back

edge (the red edge from 𝐵5 to 𝐵1 in the left CFG) is eliminated. The blue commands are new. 𝐴 is given

by j >= 0 && (i == 0 ⇒ j > 0). Note that the blocks 𝐵6 and 𝐵7 from the original CFG representation

in Figure 2.9 on page 34 are coalesced to 𝐵6 here due to the CFG optimisations that occur before cycle

elimination.

3. Insert havoc commands at the start of the loop head block per

variable in 𝑋𝐻 , followed by a single assume 𝐴 statement (preceding

any further statements).

4. For each block with a back edge to a loop head, delete the back edge;

if this leaves the block with no successors, append assume false

to its commands.
14

14: Omitting assume false if there are

no successors would be incomplete, since

otherwise there could be executions

reaching the end of the block in a normal

outcome in which case the postcondition

would have to be satisfied.

The target CFG constructed by cycle elimination overapproximates the

set of looping executions of the source CFG via the loop invariant. The

assert command added in step 2 to blocks that are not part of the

loop itself (e.g. 𝐵0) ensures that the loop invariant holds right before

entering the loop. The havoc-then-assume sequence introduced in step

3 can be understood as generating executions for arbitrary values of 𝑋𝐻

satisfying the loop invariant 𝐴, effectively overapproximating the set

of states reachable at the loop head in the original program (variables

not in 𝑋𝐻 are not affected by the loop). In particular, the remnants of

any originally looping path (e.g. 𝐵′
1
→ 𝐵′

2
→ 𝐵′

3
→ 𝐵′

5
) enforce that any

non-failing execution starting from any such state must result in a state

which re-establishes the loop invariant before going back to the loop

head (e.g. due to the assert added to the origin of a back edge such as

𝐵′
5

in step 2). Such paths exist only to ensure that the loop invariant is

preserved by every loop iteration (analogously to the premise of a Hoare

logic while rule) and to ensure that no loop iteration fails.

The parts of an execution in the source CFG after leaving the loop are

captured in the target CFG by an execution that does not go through any
complete iteration of the loop. For example, in Figure 2.11, an execution

in the source CFG that leaves the loop from 𝐵1 to 𝐵6 (after potentially

multiple executions through the loop) is captured from 𝐵6 onwards

by an execution in the target CFG via an execution that goes from 𝐵′
1

to 𝐵′
6

(without visiting any blocks within the loop). Intuitively, such a

capturing execution from 𝐵′
1

to 𝐵′
6

must exist since the loop invariant

overapproximates the possible set of states reachable at the loop head (if

all the introduced assert commands in the target CFG always succeed).

2.4. Cycle Elimination 39

Note that here a single source execution that executes multiple loop

iterations is generally not captured by a single target execution but

by multiple target executions. Each loop iteration in the same source

execution is potentially captured by a different target execution.

𝐵0

𝐵1

𝐵2

𝐵3

𝐵4

𝐵5

𝐵6

Figure 2.12: A reducible CFG

with two loops, where the loop

with loop head 𝐵2 is nested

within the loop with loop head

𝐵1. The back edges are shown in

red.

The above intuition for the soundness of cycle elimination must be

formally justified. In particular, this must be achieved not only for the

simple CFG in Figure 2.11, but for any reducible looping structure. In

general, a loop head may have multiple back edges, looping structures

may nest, and edges may exit multiple loops. For example, Figure 2.12

shows a more complex nesting structure with two loops, one nested

within the other. In this example, there are three edges that exit the inner

loop. On the one hand, the edges from 𝐵3 to 𝐵5 and from 𝐵4 to 𝐵5 both

go to the outer loop. On the other hand, the edge from 𝐵3 to 𝐵6 goes to

an exit block of the CFG, thus exiting the inner and the outer loop.

In general, for cycle elimination to be sound, the CFG must be reducible

(as we make clear below), and Boogie must identify the loop heads and

corresponding back edges accurately, which is complex in general. Impor-

tantly (but perhaps surprisingly), our work makes this transformation of

Boogie certifying without explicitly checking whether the CFG is reducible

or whether the removed edge is indeed a back edge (or even defining

these notions). Before we show our certification strategy, we give an

intuition for what can go wrong when the source CFG is irreducible.

2.4.2. The Need for Reducibility

Intuitively, a CFG is reducible if there is no loop that has multiple entry

points. That is, each loop has a (unique) loop head 𝐻 that dominates all

blocks in the corresponding loop, which means that any path from the

entry block of the CFG to a block in the loop must first go through 𝐻. In

particular, this means that in a reducible CFG a loop head 𝐻 dominates

40 2. Formally Validating a Verification Condition Generator

i := 1 𝐵0

assume j > 0 𝐵1

assert i > 0 𝐵2

assert j > 0 𝐵3

i := i+1 𝐵4

i := 1 𝐵′
0

assume j > 0
assert i > 0

𝐵′
1

havoc i

assume i > 0
𝐵′

2

assert j > 0 𝐵′
3

i := i+1
assert i > 0
assume false

𝐵′
4

Figure 2.13: An example where the source CFG on the left is irreducible and the resulting target CFG after

cycle elimination is shown on the right (if the edge from 𝐵4 to 𝐵2 is eliminated and thus the invariant i > 0 is

used). Here, the transformation is unsound. Boogie rejects the program, since the source CFG is irreducible.

the origin block of each corresponding back edge that leads back to

𝐻. The CFGs in Figure 2.11 and Figure 2.12 are reducible. For the CFG

in Figure 2.12, the unique entry point of the outer loop is 𝐵1 and the

unique entry point of the inner loop is 𝐵2.

The example in Figure 2.13 shows why the cycle elimination transforma-

tion presented above would be unsound in general if the source CFG

is irreducible. Here, the source CFG (shown on the left) is irreducible,

because the loop has two entry points: 𝐵2 and 𝐵4. The target CFG (shown

on the right) shows the effect of cycle elimination if one identifies 𝐵2 as

the loop head and thus eliminates the edge from 𝐵4 to 𝐵2. This leads to an

unsound transformation because the source CFG has a failing execution

and the target CFG does not. For the source CFG, the execution 𝑒 along

the path 𝐵0 → 𝐵4 → 𝐵2 → 𝐵3 fails in an initial state where j evaluates

to 0, since j > 0 does not hold when 𝐵3 is reached. However, the target

CFG has no failing executions. In particular, every execution that reaches

𝐵′
3

must have gone through 𝐵′
1
, which prunes all executions where j >

0 does not hold. Since j is not modified by the loop, j is not havocked in

the target CFG and, as a result, the assert in 𝐵′
3

succeeds. However, in

the source CFG, not all executions (e.g. the execution 𝑒) entering the loop

from 𝐵4 satisfy j > 0 at block 𝐵3.

As the example shows, the high-level problem with multiple loop entry

points is that the different sets of executions entering the loop through

different entry points may satisfy different constraints on variables not

modified by the loop. As a result, if one eliminates edges going back to

one of the entry points, then one captures only those executions going

through that entry point. Therefore, it is crucial that the CFG is reducible

such that every loop has a unique entry point and thus that the identified

entry point (i. e. the loop head) dominates every block in the loop.

2.4. Cycle Elimination 41

2.4.3. Local Block Lemmas

For the certification of cycle elimination, we follow the general strategy

discussed in Subsection 2.2.3 on page 20. The first step is to define and

prove the local block lemmas relating a source block and the correspond-

ing target block. Recall that these imply that if executing the statements

of a target block yields no failing executions, the same holds for the

corresponding source block; this result is trivial for source blocks other

than loop heads and their immediate predecessors, since these are left

unchanged by cycle elimination. To enable eventual composition of our

local block lemmas (to prove the global block theorems), we need to also

reflect the role of the assume and assert commands employed in this

transformation. The formal statement of our local block lemmas is as

follows:
15

15: We present our local block lemmas

(and global block theorems) as “theo-

rems” in this dissertation. Note that these

results are proved on each run of the veri-

fier for concrete blocks; this is not a single

theorem that we show once and for all.

Theorem 2.4.1 (Cycle elimination local block lemma) Let 𝐵 be a source
block with commands cs𝑆, whose corresponding target block has commands
cs𝑇 . If 𝐵 is a loop head, let 𝑋𝐻 be as defined in cycle elimination step 1 (and the
empty set otherwise) and let 𝐴pre be its loop invariant (and true otherwise).
If 𝐵 is a predecessor of a loop head, let 𝐴post be the loop invariant of its
successor (and true otherwise). Let Λ be the variable context for the source
and target procedures. Then, for any type interpretation T, any well-formed
function interpretation Fw.r.t. T, any states 𝜎1 and 𝜎2, and any outcome 𝑠′

1
,

if:

1. (T,Λ,F) ⊢ ⟨cs𝑆 ,N(𝜎1)⟩ [→] 𝑠′
1

2. ∀𝑠′
2
. (T,Λ,F) ⊢ ⟨cs𝑇 ,N(𝜎2)⟩ [→] 𝑠′

2
=⇒ 𝑠′

2
≠ F

3. 𝐴pre is satisfied in 𝜎1, and 𝜎2 matches 𝜎1 on all variables w.r.t.

variable context Λ except for those in 𝑋𝐻 (see below for what it means
for states to match w.r.t. a variable context)

4. 𝜎1 and 𝜎2 are well-typed w.r.t. the variable context Λ where the types
are interpreted wrt T (i. e. stateWellTy(T,Λ, ∅, 𝜎𝑖) for 𝑖 ∈ {1, 2})

then: 𝑠′
1
≠ F, and if 𝑠′

1
is a normal outcome N(𝜎′

1
), then (1) 𝐴post is satisfied

in 𝜎′
1
, (2) stateWellTy(T,Λ, ∅, 𝜎′

1
) holds, and (3) if no assume false was

added at the end of cs𝑇 , then there is a target execution in 𝑐𝑠𝑇 from N(𝜎2)
that reaches a normal outcome N(𝜎′

2
) whose state matches 𝜎′

1
on all variables

w.r.t. Λ, and stateWellTy(T,Λ, ∅, 𝜎′
2
) holds.

Note that two states 𝜎1 and 𝜎2 match w.r.t. a variable context Λ on a variable

𝑥 if and only if: if 𝑥 is a local variable according to Λ, then the local state

components of 𝜎1 and 𝜎2 store the same value for 𝑥, and otherwise the

global state components of 𝜎1 and 𝜎2 store the same value for 𝑥.

The gist of this lemma is to capture locally the ideas behind the four steps

of the transformation. For example, consequence (1) reflects that after the

transformation, any blocks that were previously predecessors of a loop

head (𝐵′
0

and 𝐵′
5

in our running example) will have an assert command

checking for the corresponding invariant. So if the target program has

no failing executions, in each source execution this invariant will be true

at that point.

The third assumption reflects that loop heads in the target CFG include

a havoc of the modified loop variables 𝑋𝐻 followed by the assume of

the loop invariant. The idea is that if cycle elimination is sound, then

42 2. Formally Validating a Verification Condition Generator

for any source execution that reaches the loop head in a state N(𝜎1)
(via potentially multiple loop iterations), it must hold that (R1) the loop

invariant holds in 𝜎1, and (R2) there is a corresponding execution in the

target CFG that reaches the corresponding block without executing loop

iterations in a state N(𝜎2) that agrees with 𝜎1 on all variables different

from 𝑋𝐻 . In the case of loop heads, the local block lemma will be applied

only for such states 𝜎1 and 𝜎2. The third assumption captures (R1) directly

in order to justify the inserted assume command in the target block, and

further requires that the two states differ only in the values of variables in

𝑋𝐻 , which is required to ensure that after executing the havoc commands

in the target block, the two states are again fully in sync as guaranteed by

conclusion (3) of the local block lemma.

The fourth assumption requires that the two states are well-typed. We

need this assumption together with the constraint that the function

interpretation is well-formed to prove that the insertedassert commands,

which check the invariants, reduce. The reason is that the loop invariant

is not necessarily evaluated in a corresponding state in the source block.

Thus, we cannot use the first assumption (the existence of a source

execution through the source block) to prove that the loop invariant

evaluates to a Boolean and thus prove that the inserted assert command

in the target block reduces.
16

Instead, we prove the inserted assert16: For the inserted assume command,

we can use assumption 3.
command reduces by showing that the loop invariant 𝐼 evaluates to a

Boolean in the target state. We achieve this by proving that 𝐼 is well-typed

and then use the well-typedness assumption (to conclude that the target

state is well-typed) and our type soundness result (see Subsection 2.3.6

on page 35).

2.4.4. Generating Proofs for Local Block Lemmas

To automatically generate a proof for a local block lemma that can be

automatically checked by Isabelle, we define a relation on the lists of

basic commands in CFG blocks, which captures the possible syntactic

relationships between a source CFG block and target CFG block for cycle

elimination based on different cases (e.g. whether the source block is a

loop head or whether a successor block is a loop head). More precisely,

we define a relation between source block commands cs𝑆 and target block

commands cs𝑇 of the following form (whose definition we will show

shortly):

cycleElimRel(𝑋 list
𝐻 , 𝐴pre , 𝐴post , cut, cs𝑆 , cs𝑇) (2.1)

We prove once and for all that if the parameter cut is a Boolean expressing

whether an assume false is added at the end of the target block, 𝑋 list
𝐻

is a list representation of 𝑋𝐻 defined in Theorem 2.4.1 (the local block

lemma) and the other parameters are the same as in Theorem 2.4.1, and

certain typing properties hold, then the local block lemma holds. Thus, to

generate a proof of a local block lemma, we just need to generate proofs

for proposition 2.1 and for the required typing properties.

The relation cycleElimRel is defined inductively. Figure 2.14 shows a sim-

plified version of the rules.
17

17: Here, we ignore the fact that there can

be multiple invariants (their conjunction

forms the intended invariant) and that

assume commands at the beginning of a

loop head are treated by Boogie as free
invariants. We handle these aspects in our

mechanisation.

The rules syntactically reflect the insertion

of statements in the cycle elimination transformation. For example, to

derive proposition 2.1 where the source block is a loop head whose

2.4. Cycle Elimination 43

cycleElimRel(𝑋 list
𝐻 , 𝐴pre , 𝐴post , cut, cs𝑆 , cs𝑇)

(havoc-ce)
cycleElimRel(𝑥 :: 𝑋 list

𝐻 , 𝐴pre , 𝐴post , cut, cs𝑆 , havoc 𝑥 :: cs𝑇)

cycleElimRel([], true, 𝐴post , cut, cs𝑆 , cs𝑇)
(preinv-ce)

cycleElimRel([], 𝐴pre , 𝐴post , cut, assert 𝐴pre :: cs𝑆 , assume 𝐴pre :: cs𝑇)

cycleElimRel([], true, 𝐴post , cut, cs𝑆 , cs𝑇)
(id-ce)

cycleElimRel([], true, 𝐴post , cut, 𝑐 :: cs𝑆 , 𝑐 :: cs𝑇)

cycleElimRel([], true, true, cut, [], cs𝑇)
(postinv-ce)

cycleElimRel([], true, 𝐴post , cut, [], assert 𝐴pre :: cs𝑇)

(nil-ce)
cycleElimRel([], true, true, cut, [], [])

cut
(cut-ce)

cycleElimRel([], true, true, cut, [], [assume false])

Figure 2.14: Rules for the definition of cycleElimRel (simplified).

successors are not loop heads themselves, one must apply the following

rules in order: (1) rule havoc-ce for each introduced havoc command,

(2) rule preinv-ce for the precondition (reflecting that the assert in the

loop head is transformed into an assume command), (3) repeated appli-

cation of rule id-ce. Given the parameters to cycleElimRel it is always clear

which rule to apply next and thus automating proofs for cycleElimRel
judgements is straightforward.

Our approach for proving local block lemmas via cycleElimRel relies on

Boogie transforming blocks in a certain way. For example, our approach

relies on the inserted assert commands using the invariant precisely as

it appears in the source blocks, and leaving blocks that are neither loop

heads nor predecessors to loop heads unchanged. One could instead

devise a more semantic approach that does not need to rely on such

aspects. However, then automation becomes more challenging. Since

we do not expect large changes in cycle elimination transformation, we

decided to pick an approach that is easy to automate and also easy to

adapt to smaller changes.

2.4.5. Global Block Theorems

The second step of our general validation approach is to lift the results

from the local block lemmas to global block theorems, which concern

executions through the entire source and target CFGs starting from some

source and its corresponding target block. In essence, this lifted result

implies that if there are no failing executions starting from some target

44 2. Formally Validating a Verification Condition Generator

block (possibly continuing through the CFG via successors), then there

are no failing executions starting from the source block.

The major challenge in the proofs for global block theorems is reasoning

about looping executions in the source CFG for three reasons. First,

each iteration of the loop (of which there may be infinitely many) must

possibly be justified by a different execution in the target CFG: these target

executions start from the block corresponding to the source loop entry

and end in a block 𝐵′
𝑡 corresponding to the end of an iteration in the target

entry (without every continuing beyond 𝐵′
𝑡). Second, we need to include

sufficient properties in the global block theorems such that each block

pair can be considered separately, and each global block theorem can

be proved using the local block theorem of the same block pair and the

global block theorems of the successors. This requires reflecting properties

about the corresponding loop heads and the modified loop variables 𝑋𝐻

identified by Boogie. An alternative to this modular approach would be

to prove a single global block theorem for the entire loop directly. This

would be cumbersome, since a loop consists of many blocks, may contain

nested loops, and may have multiple back edges. Third, as discussed

in Subsection 2.4.2, our proof needs to check that each identified loop

head is the unique entry point of the corresponding loop 𝑙, and thus

dominates all of the blocks in 𝑙.

In our approach, we deal with the first two points as follows. We reason

about the possibly unbounded number of loop iterations by proving

global block theorems involving a loop head by induction on the number

of steps remaining in the execution in question.
18

To allow the corre-18: This may seem insufficient since exe-

cutions can be infinite, but importantly a

failing execution is always finite, and our

theorems need only eliminate the chance

of failing executions.

sponding induction hypothesis to be applicable at the end of the loop

iteration, the induction generalises over the states in which executions

from the loop head starts: any state is considered that differs on at most

the variables 𝑋𝐻 compared to the corresponding target state. To allow

a modular approach that considers block pairs separately, our global

block theorem for a block 𝐵 within a loop then carries an additional

assumption reflecting the induction hypothesis for each loop that con-

tains 𝐵. Proving a global block theorem for the origin of a back edge is

taken care of by applying the corresponding induction hypothesis for the

case when the execution continues via the loop head. To prove a global

block theorem within a loop, one must ensure that no variables outside

of 𝑋𝐻 are modified by the block, otherwise the induction hypothesis is

not applicable at the end of the block.

With this setup, it is possible to prove all the global block theorems

without inducing any circularities in the reasoning. Moreover, it turns

out that our proof strategy also handles the third challenge: the proof

strategy implicitly checks that the loop head dominates all the blocks in

the corresponding loop. We will expand on these two points (i. e. proving

the global block theorems without inducing circularities and implicit

domination checks) in Subsection 2.4.6. First, let us take a closer look at

the formal statement of our global block theorems:

Theorem 2.4.2 (Cycle elimination global block theorem) For any block 𝐵,
let LH(𝐵) be the set of loop heads of the loops that 𝐵 is contained in (excluding
𝐵 if 𝐵 is itself a loop head).
Let 𝑄post be the postcondition of the procedure. Let 𝐺𝑆 be the source CFG

2.4. Cycle Elimination 45

and let 𝐺𝑇 be the target CFG. Let 𝐵𝑆 be a source block and let 𝐵𝑇 be the
corresponding target block. If 𝐵𝑆 is a loop head, let 𝑋𝐻 be as defined in cycle
elimination step 1 (and empty otherwise) and let 𝐴pre be its loop invariant
(and true otherwise).
Let Λ be the variable context for the source and target procedures. Then, for
any type interpretation T, any well-formed function interpretation Fw.r.t.
T, any states 𝜎1 and 𝜎2, any CFG configuration (𝑚′

1
, 𝑠′

1
), and any number

of execution steps 𝑖, if:

1. (T,Λ,F), 𝐺𝑆 ⊢ (inl(𝐵𝑆),N(𝜎1)) →𝑖
CFG (𝑚′

1
, 𝑠′

1
)

2. ∀𝑚′
2
, 𝑠′

2
. (T,Λ,F), 𝐺𝑇 ⊢ (inl(𝐵𝑇),N(𝜎2)) →∗

CFG (𝑚′
2
, 𝑠′

2
) =⇒

𝑠′
2
≠ F

3. ∀𝐵𝐻 ∈ LH(𝐵𝑆). loopIH(T,Λ,F, 𝐺𝑆 , 𝐵𝐻 , 𝜎1 , 𝑖 , (𝑚′
1
, 𝑠′

1
))

4. 𝐴pre is satisfied in 𝜎1, and 𝜎2 matches 𝜎1 on all variables w.r.t. variable
context Λ except for those in 𝑋𝐻

5. 𝜎1 and 𝜎2 are well-typed w.r.t. the variable context Λ where the types
are interpreted wrt T

then: validConfig(T,Λ,F, 𝑄post , (𝑚′
1
, 𝑠′

1
)) holds

where validConfig captures the validity of a CFG configuration as defined

by:

Definition 2.4.1 (Validity of a CFG configuration)

validConfig(T,Λ,F, 𝑄post , (𝑚′, 𝑠′)) ≜
𝑠′ ≠ F ∧(

𝑚′ = inr(()) ⇒
∀𝜎. 𝑠′ = N(𝜎) ⇒ (T,Λ,F), ∅ ⊢ ⟨𝑄post , 𝜎⟩ ⇓ BoolVal(true)

)
The first assumption of the global block theorem expresses that a source

execution exists starting from the source block that executes precisely

𝑖 blocks. The conclusion states that the configuration reached by this

execution must be valid. That is, the resulting outcome is non-failing,

and if it is a normal outcome at the end of an exit block (i. e. a block

without any successors), then the postcondition of the procedure holds.

This conclusion is in contrast to the second assumption, which expresses

that the corresponding target executions do not fail but does not say

anything about the postcondition. The reason for this mismatch is due to

Boogie inserting an assert command of the postcondition in exit blocks

of the target CFG (the source CFG does not have these assert commands),

as we will discuss in Subsection 2.4.8. Thus, just knowing that the target

executions cannot fail is sufficient. The final two assumptions mimic

assumptions used for the corresponding local block lemma.

The most interesting assumption is the third one reflecting the induction

hypothesis for each loop in which the block is contained via loopIH. The

definition of loopIH is given by:

Definition 2.4.2 (loopIH) Let 𝐵𝐻 be a loop head where 𝑋𝐻 is as defined in
cycle elimination step 1 and let 𝐴pre be its loop invariant.
Then, loopIH(T,Λ,F, 𝐺𝑆 , 𝐵𝐻 , 𝜎, 𝑖 , (𝑚′, 𝑠′)) holds iff for all 𝑖′ where 𝑖′ ≤ 𝑖

and all states 𝜎′ the following holds: if

46 2. Formally Validating a Verification Condition Generator

1. (T,Λ,F), 𝐺𝑆 ⊢ (inl(𝐵𝐻),N(𝜎′)) →𝑖′
CFG (𝑚′, 𝑠′)

2. 𝐴pre is satisfied in 𝜎′, and 𝜎′ differs from 𝜎 only on variables in 𝑋𝐻

and variables not defined in Λ

3. 𝜎 and 𝜎′ are well-typed w.r.t. the variable context Λ where the types
are interpreted wrt T

then validConfig(T,Λ,F, 𝑄post , (𝑚′, 𝑠′)) holds.

loopIH for loop head 𝐵𝐻 is very similar to the global block theorem

for 𝐵𝐻 . Apart from the source state 𝜎 and the source execution steps 𝑖

potentially being different, there are the following three differences in

loopIH compared to the global block theorem:

1. All numbers of execution steps 𝑖′ that are most 𝑖 are considered in

the source (reflecting a strong induction) such that loopIH can be

applied after any number of blocks executed in the loop.

2. There is no assumption stating that the target executions do not fail

(assumption 2 in Theorem 2.4.2).

3. There is no assumption for each of the loops that 𝐵𝐻 is contained

in (assumption 3 in Theorem 2.4.2)

In point 1, the number of execution steps 𝑖′ need not be strictly smaller

than 𝑖 because of the following reason. When doing an induction proof

for the global block theorem of loop head 𝐵𝐻 on the number of steps 𝑗

of the source execution starting from 𝐵𝐻 , we get a resulting induction

hypothesis that is applicable for all executions from 𝐵𝐻 that take strictly
less than 𝑗 steps. Since loopIH is used only for global block theorems of

blocks within the corresponding loop other than the corresponding loop

head 𝐵𝐻 , the number of execution steps 𝑖 considered in loopIH is always

strictly smaller than 𝑗 (since at least 𝐵𝐻 must have been executed to reach

blocks within the loop). Thus, the induction hypothesis is applicable for

all number of execution steps that are at most 𝑖 (i. e. including 𝑖).

The reason for points 2 and 3 is the following. When doing an induction

proof for the global block theorem for loop head 𝐵𝐻 , one may assume

the following propositions: the resulting induction hypothesis and the

premises in this global block theorem. These propositions are sufficient

to directly justify the assumptions specified by points 2 and 3. So, these

assumptions need not be included in loopIH. As a result, there is less

work required when applying loopIH to justify executions that go back to

a loop head via a back edge.

For point 2, for a given loop execution in the source CFG, all corresponding

executions in the target CFG justifying each loop iteration start in the same
state from the loop head (state 𝜎2 in Theorem 2.4.2). Thus, the required

non-failure assumption on the target CFG is identical to the non-failure

assumption obtained from the global block theorem of the loop head

𝐵𝐻 .

For point 3, the assumption of the global block theorem of 𝐵𝐻 already

states that loopIH holds for the relevant loops where the source state

parameter 𝜎 in loopIH is given by a fixed source state 𝜎1. To justify point

3, we need to essentially argue that loopIH also holds for any instantiation

of the source state parameter that differs from 𝜎1 only on variables 𝑋𝐻 .

This is the case, because loopIH considers all executions starting from any

state that differs from the source state parameter only on variables 𝑋𝐻 .

2.4. Cycle Elimination 47

2.4.6. Generating Proofs for Global Block Theorems

As we discuss in Subsection 2.2.2 on page 16, in our high-level approach,

typically to prove the global block theorem for source block 𝐵, we use

the local block lemma of 𝐵 (to reason about the execution through 𝐵

itself) and the global block theorems of the successors of 𝐵 (to reason

about executions continuing after 𝐵). This strategy leads to dependen-

cies between global block theorems. We need to make sure that these

dependencies do not induce circular reasoning, which is not obvious in

the case of cycle elimination as the source CFG may have cycles. The way

we avoid circularities is by proving the global block theorem gbt of the

origin of a back edge 𝑒 using the induction hypothesis corresponding

to the target of 𝑒 (which is a premise of gbt), instead of using the global

block theorem of the target of 𝑒. This way the global block theorem of

the target of 𝑒 (i. e. a loop head) depends ultimately on gbt but not vice

versa.

Isabelle does not allow circular reasoning by forcing one to prove Isabelle

lemmas in a given order, where the proof of a lemma may use only

lemmas that have been previously proved. So, we need to choose an order

to explicitly show that our approach indeed does not result in circular

dependencies. With our strategy, we are able to do so by automatically

generating proofs for global block theorems in reverse topological order
of the target CFG. Such an order exists, since the target CFG is acyclic.

This order guarantees that the proof for the theorem of source block 𝐵

can rely on the global block theorems of the successors of 𝐵 excluding

those successors reached via back edges (those can be justified via the

induction hypothesis assumptions). This enables proving each global

block theorem via the corresponding local block lemma and the global

block theorems of the successors. For example, in our running example

with a single loop shown in Figure 2.11 on page 38, a possible order is

given by 𝐵6 , 𝐵5 , 𝐵3 , 𝐵4 , 𝐵2 , 𝐵1 , 𝐵0. The blocks 𝐵2 , 𝐵3 , 𝐵4 , 𝐵5 within the

loop each have an induction hypothesis for the loop. The proof for

the theorem of 𝐵5 uses the induction hypothesis to justify executions

continuing via the back edge to the loop head 𝐵1. The proofs for the

theorems of 𝐵3 and 𝐵4 need the induction hypothesis in order to use

the theorem of 𝐵5. The proof for the theorem of 𝐵2 needs the induction

hypothesis in order to use the theorem for 𝐵3 and 𝐵4. The proof for the

loop head 𝐵1 is done via an induction, which provides the induction

hypothesis needed to use the theorem of 𝐵2.

Our proof strategy works only if every path to a block 𝐵𝑙 in a loop 𝑙 first

goes through the corresponding loop head 𝐵𝐻 identified by Boogie (i. e.
𝐵𝐻 dominates 𝐵l). As discussed, this property holds only if the source

CFG is reducible. If there were a path 𝑝 that entered the loop via 𝐵l
without first going through the identified loop head, then our proof

strategy would fail. The reason is that one of the premises of the global

block theorem gbt𝑙 of 𝐵l is the induction hypothesis for 𝐵𝐻 . As a result,

the global block theorem of the predecessor 𝐵pre of 𝐵l in 𝑝 would not

be provable with our approach, since in this proof there would be no

way of justifying the induction hypothesis premise of gbtl (because 𝐵pre
is not in the loop, the global block theorem of 𝐵pre would not have such a

premise).

To concretely see why our proof strategy would fail as expected in cases

48 2. Formally Validating a Verification Condition Generator

where an identified loop head does not dominate all blocks in the corre-

sponding loop, recall the unsound transformation shown in Figure 2.13

on page 40, where the loop head 𝐵2 does not dominate the origin 𝐵4 of a

back edge. Here, since 𝐵4 is a block in the loop, one of the premises in

the corresponding global block theorem gbt
4

is the induction hypothesis

for the loop. As a result, we would not be able to prove the global block

theorem gbt
0

for 𝐵0 (a predecessor of 𝐵4 outside of the loop). To do so, we

would have to use the global block theorem for 𝐵4, which we cannot, since

in the proof of gbt
0

there is no way to establish the induction hypothesis

premise in gbt
4
.

In other words, if our proof succeeds, then our proof implicitly shows the

necessary requirement that loop heads (as identified by Boogie) dominate

all the blocks in the corresponding loop without us formalising any notion
of domination, CFG reducibility, or any other advanced graph-theoretic concept.
This shows a major benefit of our validation approach over a once-and-for-

all proof of Boogie itself: our proofs indirectly check that the identification

of loop heads and back edges guarantees the necessary semantic properties
without being concerned with how Boogie’s implementation computes

this information.

Our approach applies equally to nested loops and more-generally to

reducible CFG structures. For example, the global block theorem for

block 𝐵3 that is in a nested loop in Figure 2.12 on page 39 may assume

induction hypotheses for both the inner and outer loop. In nested loops,

the requirement that no more than the havocked variables 𝑋𝐻 are

modified in the outer loop is easily handled by showing that variables

modified in an inner loop are a subset of the havocked variables defined

in the corresponding outer loops.

To express and prove the global block theorems, our instrumentation

directly extracts the loop head and back edge identification from Boogie.

Thus, this identification need not be recomputed. From the loop heads

and back edges, it is straightforward to compute the loops in which a

block is contained, which is needed to express the assumption for the

induction hypotheses in our global block theorems. As for all parts of

our per-verifier-run generated certificates, our global block lemmas and

corresponding proofs are automatically generated and then automatically

checked in Isabelle per Boogie procedure.

2.4.7. Proving Soundness of this Transformation

Subsequence

To prove the soundness of our chosen transformation subsequence

involving cycle elimination, we need to show that if the target procedure

is correct, then the source procedure is correct. To do so, we use the

global block theorem relating the entry blocks in the source and target

CFGs representing the procedure bodies.

As discussed in Subsection 2.3.4, a procedure is correct, if the procedure

body has no failing executions for any well-formed type and function

interpretation, and any well-typed initial state in which the axioms

are satisfied.
19

Since the transformation subsequence involving cycle19: We ignore pre- and postconditions

here for the sake of presentation; they

are handled in our generated certificates.

2.4. Cycle Elimination 49

𝐵0

y := x+2 𝐵1
y := 2*x-2 𝐵2

assume x > 0 𝐵pre

𝐵′
0

y := x+2 𝐵′
1

y := 2*x-2 𝐵′
2

assert y >= 0 𝐵post

Figure 2.15: An example showing the insertion of precondition x > 0 and postcondition y >= 0 applied to

the left CFG, where the resulting CFG is shown on the right.

elimination changes only the procedure bodies (e.g. the variables, unin-

terpreted functions, uninterpreted types, and axioms are identical), the

well-formed type and functions interpretations and relevant initial states

are the same for both the source and target procedure. Thus, to prove

the desired result, we may consider an arbitrary well-formed type and

function interpretation, and an arbitrary initial state in which the axioms

are satisfied, and then prove that if the target procedure body has no

failing executions w.r.t. these parameters, then neither does the source

procedure body w.r.t. the same parameters. This follows directly from

the global block theorem relating the entry blocks.

2.4.8. Pre- and Postcondition Insertion, Empty Block

Insertion

So far in this section, we have discussed only the cycle elimination

transformation. However, as shown in Figure 2.1 on page 17, our gener-

ated certificate for the corresponding transformation subsequence also

includes two simple transformations: the insertion of pre- and postcon-

ditions, and the insertion of empty blocks. One consequence of both of

these transformations is that not every block in the target CFG has a

corresponding block in the source CFG.

Figure 2.15 shows an example of pre- and postcondition insertion where

the precondition is x > 0 and the postcondition is y >= 0. Here, two

new blocks are added: a new entry block 𝐵pre where the precondition is

assumed and a new exit block 𝐵post where the postcondition is asserted.

These two blocks do not have corresponding blocks in the source. We

handle the pre- and postcondition insertion transformation in our proof

generation as follows. For each source block and its corresponding

target block, we prove a a global block theorem as discussed for cycle

elimination. In Figure 2.15, this means we prove theorems for the pairs

(𝐵0 , 𝐵
′
0
), (𝐵′

1
, 𝐵1), (𝐵2 , 𝐵

′
2
). To prove the global block theorems for the

source exit blocks (i. e. pairs (𝐵1 , 𝐵
′
1
) and (𝐵2 , 𝐵

′
2
) in the figure), we prove

that executions reaching the end of the corresponding target blocks can

continue to the new unified target exit block (i. e. 𝐵post in the figure) and

thus the postcondition must hold since those target executions cannot

fail.
20

Finally, we prove a global block theorem relating the source entry 20: Here, we must again use the type

soundness of expressions to show that

the postcondition reduces to a Boolean.

block (i. e. 𝐵0 in the figure) with the new target entry block that has the

inserted precondition (i. e. 𝐵pre). Here, we need to include an additional

assumption in the global block theorem stating that the precondition

holds in the initial state in order to justify the assume command in the

50 2. Formally Validating a Verification Condition Generator

assume x > 0 && y > 0 𝐵0

x := y+4 𝐵1

z := x+y
assert z > 0

𝐵2

assume x > 0 && y > 0 𝐵′
0

x := y+4 𝐵′
1

𝐵empty

z := x+y
assert z > 0

𝐵′
2

Figure 2.16: An example showing the insertion of empty blocks applied to the left CFG, where the resulting

CFG is shown on the right.

target block. The resulting global block theorem can be used to prove

the soundness of the transformation, since the correctness of a Boogie

procedure considers only those executions that satisfy the precondition.

The empty block insertion transformation inserts empty blocks to ensure

that every block 𝐵 with more than one predecessor (i. e. a join block) has

only predecessors with exactly one successor (namely 𝐵). This property

is important for the soundness of assignment elimination, which will

become clear in Subsection 2.5.6.

The left CFG in Figure 2.16 shows an example where the mentioned

property does not hold. In particular, 𝐵2 has two predecessors and one

of the predecessors (𝐵0) has two successors. As a result, Boogie inserts

an empty block 𝐵empty between 𝐵0 and 𝐵2 to obtain the CFG on the right,

which establishes the property.

Handling these empty blocks in the proof generation is straightforward.

For global block theorems where the target block has an inserted empty

successor, we prove that the execution in the target CFG can continue to

the original successor. For example, in Figure 2.16 for the global block

theorem relating 𝐵0 and 𝐵′
0
, we prove that target executions continuing

from 𝐵′
0

to 𝐵empty further continue to 𝐵′
2
, and then we can use the global

block theorem relating 𝐵2 and 𝐵′
2
.

2.5. Assignment Elimination

In this section, we describe our certificate generation approach for the

assignment elimination transformation. As part of assignment elimina-

tion, the Boogie verifier performs constant propagation and desugars old

expressions. For the sake of presentation, we will focus on assignment

elimination without the other two modifications first, and at the end

discuss how to handle assignment elimination with them. Unlike the

case of cycle elimination, assignment elimination makes no changes to

the CFG structure, but makes substantial changes to the program states

(via SSA-like renamings), substantially increases nondeterminism, and

employs assume commands to re-tame the sets of possible executions.

2.5.1. Assignment Elimination Overview

The main goal of assignment elimination is that ultimately a more

efficient VC can be generated [21–23]

[21]: Flanagan et al. (2001), Avoiding expo-
nential explosion: generating compact verifi-
cation conditions
[22]: Leino (2005), Efficient weakest precon-
ditions
[23]: Barnett et al. (2005), Weakest-
precondition of unstructured programs

. In the Boogie verifier, this is

2.5. Assignment Elimination 51

assume i != 0
j := 0
assert 𝐴

𝐵′
0

havoc i,j
assume 𝐴

𝐵′
1

assume i != 0 𝐵′
2

assume i < 5
j := j+1

𝐵′
3 assume 5 <= i 𝐵′

4

i := i-1
assert 𝐴
assume false

𝐵′
5

assume i == 0
assert j > 0

𝐵′
6

assume i0 != 0
assume j1 == 0

assert
j1 >= 0 &&
(i0 == 0⇒ j1 > 0)

𝐵′′
0

assume
j2 >= 0 &&
(i1 == 0⇒ j2 > 0)

𝐵′′
1

assume i1 != 0 𝐵′′
2

assume i1 < 5
assume j3 == j2+1
assume j4 == j3

𝐵′′
3 assume 5 <= i1

assume j4 == j2
𝐵′′

4

assume i2 == i1-1

assert
j4 >= 0 &&
(i2 == 0⇒ j4 > 0)

assume false

𝐵′′
5

assume i1 == 0
assert j2 > 0

𝐵′′
6

Figure 2.17: Assignment elimination applied to the running example where 𝐴 is given by j >= 0 && (i == 0
⇒ j > 0). The CFG after the previous transformations is shown on the left and the result of assignment

elimination is shown on the right. In practice, Boogie also applies constant propagation for the assignment j
:= 0 as part of assignment elimination, which we ignore in this figure for the sake of presentation. The final

(green) commands in 𝐵′′
3

and 𝐵′′
4

are the synchronisation commands. On entry of source block 𝐵′
2
, the current

versions of i and j are i1 and j2, respectively.

implemented as a single transformation that can be thought of as two

independent steps. Firstly, the source CFG is transformed into static single
assignment (SSA) form, introducing versions (fresh variables) for each

original program variable such that each version is assigned to at most

once in any program execution. In a second step, variable assignments

are completely eliminated: each assignment command 𝑥 := 𝑒 is replaced by

assume 𝑥 == 𝑒. Moreover, havoc commands are simply removed; their

effect is implicit in the fact that a new variable version is used (via the

SSA step) after such a command.

Figure 2.17 shows the effect of this transformation on our running example.

The synchronisation commands (highlighted in green) inserted just before

the join block (here, 𝐵′′
5
) introduce a consistent variable version (here, j4)

for use in the join block. It is convenient to speak of target variables in

terms of their source program counterparts: we say e.g. that j has version
4 on entry to block 𝐵′

5
.

Compared to executions through the source program, the space of

executions through the target program is much wider, because for each

source variable there is a set of versioned target variables. In particular,

the values of each versioned variable in the target program are initially

unconstrained, meaning executions exist for all of their combinations. The

target program constrains a versioned variable via an assume command

at the point where the corresponding (unique) update occurs in the

source program. These assume commands ensure that the versioned

variable captures precisely the corresponding source variable after the

corresponding update. Some of the target executions do not survive

these assume commands and go to magic. Importantly, however, not all
executions go to magic; enough are preserved to simulate the executions

of the original program. This is because each assume command constrains

52 2. Formally Validating a Verification Condition Generator

the value of exactly one variable version, and the same version is never

constrained more than once (guaranteed by the SSA step). Thus, for each

full source execution through the source CFG, there must exist one target

execution corresponding to the source execution, namely the one for

which the variable versions hold precisely the values that are assigned

to the variables in the source execution at the corresponding (unique)

points. Capturing this delicate argument formally is the main challenge

in certifying assignment elimination.

As an example, consider the variable j4 in the target CFG in Figure 2.17.

The variable j4 remains unconstrained in the target CFG from the entry

block until blocks 𝐵′′
3

and 𝐵′′
4
. Executions through 𝐵′′

3
(or 𝐵′′

4
) where j4

does not correspond to the constraint of the assume command in 𝐵′′
3

(or

𝐵′′
4
) will go to magic and not reach 𝐵′′

5
. However, since j4 is guaranteed

to be previously unconstrained, there is at least one simulating execution

where j4 has the value for which the constraint is fulfilled.

2.5.2. Local Block Lemmas

To validate assignment elimination, it is sufficient to prove the following

property 𝑃: each source execution through the source CFG is simulated

by a single target execution through the target CFG, made precise by

constructing a relation between the states in these executions. A natural

approach for the local block lemma might therefore be to show that each

source execution through a single source block is simulated by a single
target execution through the corresponding target block.

21
Then, the21: Such a local block lemma would be

similar to the one for cycle elimination

(see Subsection 2.4.3).

idea would be to compose the local block lemmas (via the global block

theorems) to construct the simulating target execution for any execution

through the source CFG starting from the entry block. Such forward
simulation arguments to prove the property 𝑃 are standard. However,

this approach for proving local block lemmas does not work for Boogie’s

assignment elimination transformation.

The reason such a forward simulation approach does not work here is

that given an initial target state, the target CFG does not modify any

variables and thus leaves states unchanged. As a result, choosing a single
simulating target execution through a block 𝐵 requires choosing a state

for the target execution, which directly defines every value for each of

the variable versions (including future versions that are relevant after
the execution of 𝐵). Thus, in a local block lemma, picking the correct

target execution would require knowledge of all variable assignments in

the source CFG that are going to happen, which is not possible due to

nondeterminism. So, to nevertheless allow a block-modular certification

strategy, we must tackle this challenge of expressing a local block lemma

for assignment elimination via another approach.

To illustrate this challenge on an example, consider relating the block 𝐵′
0

and 𝐵′′
0

in Figure 2.17. Given a source execution through just the block 𝐵′
0

in a state 𝜎, we would have to find a corresponding target execution for 𝐵′′
0
.

However, it is impossible to, for example, identify a single correct value

for j4 in the target state that will work for every possible continuation of

the source execution after 𝐵′
0
. In particular, if the havoc commands in 𝐵′

1

will choose a value smaller than 5 for i and choose value 1 for j, then

the value for j4 should be 2 (since only 𝐵′
3

will reach a normal outcome).

2.5. Assignment Elimination 53

But if the havoc commands in 𝐵′
1

instead will choose a value greater

than 5 for i and choose value 1 for j, then the value for j4 should be 1

(since only 𝐵′
4

will reach a normal outcome). Since these choices depend

on nondeterministic choices in the future that are not determined by

the current states (e.g. source state 𝜎), it is not possible to make a single

choice that will work in all cases.

To handle this challenge, we relate each source state with a set 𝑇 of

corresponding target states (instead of a single target state). This allows

us to choose a set of target executions for the local block lemma such

that for each possible future continuation of the source execution at least

one of the target executions will be the correct one simulating the source

execution.

To specify the relationship between source and target states, we define

variable relations V𝑅 at each point in a execution, making explicit the

mappings used in the SSA step between source program variables and

their corresponding versions. For example, on entry to block 𝐵′
2

in

the source version of our running example (correspondingly 𝐵′′
2

in the

target), the V𝑅 relation relates i to i1 and j to j2. All target states 𝑡 ∈ 𝑇

must precisely agree with the source state 𝑠 w.r.t. V𝑅 (e.g., 𝑠(i) = 𝑡(i1),
𝑠(j) = 𝑡(j2)). On the other hand, our sets of states 𝑇 are required to be

completely unconstrained (besides typing) for future variable versions.

For example, for every 𝑡 ∈ 𝑇 at the same point in our example, there

must be states in 𝑇 assigning each possible value (of the same type) to i2

(and otherwise agreeing with 𝑡).

More precisely, for a set of variables 𝑋, we say that a set of states 𝑇

constrains at most 𝑋 w.r.t. variable context Λ if, for every 𝑡 ∈ 𝑇, for every

𝑧 ∉ 𝑋 s.t. 𝑧 is recorded in Λ, and for every value 𝑣 of 𝑧’s type w.r.t. Λ, we

have 𝑡[𝑧 ↦→ 𝑣] ∈ 𝑇. In other words, the set 𝑇 is closed under arbitrary

changes to values of all variables in Λ but not in 𝑋 . We construct our sets

𝑇 such that they constrain at most current and past versions of program

variables. It is this fact that enables us to handle subsequent assume

commands in the target program and, in particular, to show that the set

of possible executions in the target program never becomes empty while

there are possible executions in the source program. For example, when

relating the source command j := j+1 in 𝐵′
3

with the target command

assume j3 == j2 + 1 in block 𝐵′′
3
, we use the fact that our set of states

does not constrain j3 to prove that, although many executions go to

magic at this point, for a non-empty set of states 𝑇′ ⊆ 𝑇 (those in which

j3 has the “right” value equal to j2 + 1), the execution continues in the

target.

We now make these notions more precise by showing our local block

lemmas for assignment elimination:
22

22: We omit some details regarding well-

typedness, handled fully in our Isabelle

formalisation.

Theorem 2.5.1 (Assignment elimination local block lemma) Let cs𝑆
be the commands of a source block 𝐵 whose corresponding target block has
commands cs𝑇 . Let Λ1 and Λ2 be the variable contexts for the source and
target procedures, respectively. Let V𝑅 and V′

𝑅
be the variable relations at

the beginning and end of 𝐵, respectively. Let 𝑌 be the variable versions
corresponding to the target variables of assignment and havoc commands in
cs𝑆. Then, for any type interpretation T, any function interpretation F, any
set of variable versions 𝑋, any state 𝜎, any outcome 𝑠′, and any non-empty

54 2. Formally Validating a Verification Condition Generator

set 𝑇 of states such that 𝜎 agrees with 𝑇 according to V𝑅 and 𝑇 constrains at
most 𝑋 w.r.t. Λ2, it must hold that: if

1. (T,Λ1 ,F) ⊢ ⟨cs𝑆 ,N(𝜎)⟩ [→] 𝑠′ ∧ 𝑠′ ≠ M
2. 𝑋 ∩ 𝑌 = ∅

then there exists a non-empty set of states 𝑇′ ⊆ 𝑇 s.t. 𝑇′ constrains at most
𝑋 ⊎ 𝑌 w.r.t. Λ2 and for each 𝜎′

𝑡 ∈ 𝑇′, there exists an outcome 𝑠′′𝑡 s.t.

1. (T,Λ2 ,F) ⊢ ⟨cs𝑇 ,N(𝜎′
𝑡)⟩ [→] 𝑠′′𝑡 ∧ (𝑠′ = F =⇒ 𝑠′′𝑡 = F)

2. If 𝑠′ is a normal outcome, then the state of 𝑠′ and 𝜎′
𝑡 are related w.r.t.

V′
𝑅

, and 𝑠′′𝑡 = N(𝜎′
𝑡) holds.

This lemma captures our generalised notion of forward simulation

appropriately. The universally quantified set of variable versions 𝑋

represents the previous and current variable versions on entry of the

blocks.
23

Given a set of non-empty target states 𝑇 related to the source23: 𝑋 is universally quantified instead

of being fixed to a concrete set in order

to give the flexibility of using this lemma

for different sets.

state and constrained at most by 𝑋, the lemma ensures that there is a

non-empty subset 𝑇′
of 𝑇 such that (1) each target execution from any

state 𝜎′
𝑡 ∈ 𝑇′

simulates the provided source execution through the block,

and (2)𝑇′
is constrained at most by 𝑋 and the newly constrained variables

𝑌, ensuring that future variable versions remain unconstrained.

The two conclusions in the lemma make the simulation precise. The first

conclusion in the lemma expresses that the target does not get stuck and

that failures are preserved, while the second shows that if the source

execution executes normally then the resulting states are related. Note

that premise 2 (𝑋 ∩ 𝑌 = ∅) is essential in the proof to guarantee that the

assume commands introduced by assignment elimination in the target

block do not eliminate the chance to simulate source executions; the

condition expresses that the variable versions newly constrained do not

intersect with those previously constrained. To prove such a lemma for

a concrete target block with commands cs𝑇 , we must also check that

the same version is not constrained twice in cs𝑇 . Note that in these

proofs and also in the proofs for our global block theorems, we need

not deal with any explicit notion of Boogie’s SSA computation and also

need not explicitly formalise the precise property guaranteed by SSA.

Instead, we prove simple disjointness checks, which are guaranteed to

hold if Boogie’s SSA computation is correct, and which together show

the necessary conditions for assignment elimination to be sound.

2.5.3. Generating Proofs for Local Block Lemmas

To automatically generate proofs for the local block lemmas for assign-

ment elimination such that Isabelle can automatically check them, we

use a similar approach as for cycle elimination. We define a relation

on two lists of basic commands, which captures the possible syntactic

relationships between a source CFG block and target CFG block. Then,

we prove once and for all that if two blocks are in this relation, then

under certain assumptions 𝐴, the corresponding local block lemma holds.

Thus, generating a proof for a concrete local block lemma boils down to

generating proofs showing that (1) the corresponding source and target

blocks are in this relation, and (2) the assumptions 𝐴 hold.

2.5. Assignment Elimination 55

expRel(V𝑅 , 𝑒 , 𝑒′) assignElimRel(V𝑅[𝑥 ↦→ 𝑥𝑖],𝑊, cs𝑆 , cs𝑇)
(assign-ae)

assignElimRel(V𝑅 , (𝑥, 𝑥𝑖) :: 𝑊, 𝑥 := 𝑒 :: cs𝑆 , assume 𝑥𝑖 == 𝑒′ :: cs𝑇)

assignElimRel(V𝑅[𝑥 ↦→ 𝑥𝑖],𝑊, cs𝑆 , cs𝑇)
(havoc-ae)

assignElimRel(V𝑅 , (𝑥, 𝑥𝑖) :: 𝑊, havoc 𝑥 :: cs𝑆 , cs𝑇)

V𝑅(𝑥) = 𝑥𝑖 assignElimRel(V𝑅[𝑥 ↦→ 𝑥 𝑗],𝑊, [], cs𝑇)
(sync-ca)

assignElimRel(V𝑅 , (𝑥, 𝑥 𝑗) :: 𝑊, [], assume 𝑥 𝑗 == 𝑥𝑖 :: cs𝑇)

expRel(V𝑅 , 𝑒 , 𝑒′) assignElimRel(V𝑅 ,𝑊, cs𝑆 , cs𝑇)
(assert-ae)

assignElimRel(V𝑅 ,𝑊, assert 𝑒 :: cs𝑆 , assert 𝑒′ :: cs𝑇)

expRel(V𝑅 , 𝑒 , 𝑒′) assignElimRel(V𝑅 ,𝑊, cs𝑆 , cs𝑇)
(assume-ae)

assignElimRel(V𝑅 ,𝑊, assume 𝑒 :: cs𝑆 , assume 𝑒′ :: cs𝑇)

(nil-ae)
assignElimRel(V𝑅 , [], [], [])

Figure 2.18: Rules for the definition of assignElimRel (simplified).

We define a relation between source block commands cs𝑆 and target

block commands cs𝑇 w.r.t. the variable relation V𝑅 at the beginning of

the blocks of the following form (we will show the definition shortly):

assignElimRel(V𝑅 ,𝑊, cs𝑆 , cs𝑇) (2.2)

The parameter 𝑊 is a list of tuples representing the variable updates in

cs𝑆 , where the first element of the tuple is the updated source variable (i. e.
the left-hand side of an assignment or the variable in a havoc command)

and the second element of the tuple is the corresponding target version

tracking the source variable after the update. The order of the list must

correctly reflect the order in which the updates are performed in cs𝑆.

We prove once and for all that if the proposition 2.2 holds, then the cor-

responding local block lemma holds under the following assumptions:
24

24: We ignore typing-related assump-

tions for the sake of presentation; they

are fully handled in our formalisation.

(1) No target variable is constrained twice in cs𝑇 , (2) The variable relation

at the end of the block is given by the variable relation V𝑅 at the beginning

of the block adjusted by the updates specified by 𝑊 . So, to prove a con-

crete local block lemma relating a source block with commands cs𝑆 and a

target block with commands cs𝑇 , we need to do the following: (1) identify

the variable relation V𝑅 at the beginning of the blocks and the updates

𝑊 for these blocks, and then (2) prove assignElimRel(V𝑅 ,𝑊, cs𝑆 , cs𝑇). We

are able to obtain V𝑅 and 𝑊 by instrumenting the existing Boogie verifier

implementation, which keeps track of the variable relation explicitly and

which contains code that performs the variable updates.

The relation assignElimRel is defined inductively. Figure 2.18 shows a

simplified version of the rules. Most rules syntactically match a command

56 2. Formally Validating a Verification Condition Generator

in the source with a command in the target; other rules just match a

command in the source or target, which then results in a change in the

variable relation in the premise. Since it is always clear which rule to apply

next, it is straightforward to write an Isabelle tactic that automatically

proves that a source and a target block are in the relation.

The rules assign-ae and havoc-ae capture variable updates in the source

program via assignments and havoc commands, respectively. For both

rules, one of the premises checks the remaining commands with the

updated variable relation. Note that in the case of havoc-ae, the parameter

for the variable updates in assignElimRel is used to obtain the new target

variable version tracking the source variable after the havoc command,

while for assign-ae one could obtain the information by inspecting the

target assume command.

The judgement expRel(V𝑅 , 𝑒 , 𝑒′), which occurs as a premise in multiple

rules, ensures that 𝑒 and 𝑒′ evaluate to the same values in states related

via V𝑅. We define separate inductive rules for expRel (not shown here).

The rules are straightforward: they make sure that the expressions have

the same structure and that the variables are related via V𝑅.

The rule sync-ca handles synchronisation commands in the target block

(such as, for example, the final commands in 𝐵′′
3

and 𝐵′′
4

in Figure 2.17).

Here, the parameter for the variable updates is used to obtain the

corresponding source variable that is related to the synchronisation

command.

2.5.4. Global Block Theorems

As for all transformation subsequences, we lift our local block lemmas to

global block theorems certifying all executions starting from a particular

block, and thus, ultimately, to entire CFGs. For assignment elimination,

the main conceptual challenges are taken care of by the local block lemmas.

As a result, the global block theorems are a direct generalisation of the

local block lemmas and we prove the theorems in reverse topological

order of the source and target CFGs. Formally, our global block theorems

are expressed as follows:
25

25: We omit some details regarding well-

typedness, handled fully in our formali-

sation.

Theorem 2.5.2 (Assignment elimination global block theorem) Let 𝐵𝑆

be a source block in the source CFG 𝐺𝑆 and let 𝐵𝑇 be the corresponding target
block in the target CFG 𝐺𝑇 . Let Λ1 and Λ2 be the variable contexts for the
source and target procedures, respectively. Let V𝑅 be the variable relation at
the beginning of 𝐵𝑆 and 𝐵𝑇 . Let 𝑍 be the set of variables that have not yet
been constrained beginning from 𝐵𝑇 in 𝐺𝑇 . Then, for any type interpretation
T, any function interpretation F, for any set of variable versions 𝑋 , any state
𝜎, any CFG configuration (𝑚′

1
, 𝑠′

1
), any non-empty set of states 𝑇 such that 𝜎

agrees with 𝑇 according to V𝑅 and 𝑇 constrains at most 𝑋 w.r.t. Λ2, it must
hold that: if

1. (T,Λ1 ,F), 𝐺𝑆 ⊢ (inl(𝐵𝑆),N(𝜎)) →∗
CFG (𝑚′

1
, 𝑠′

1
)

2. 𝑋 ∩ 𝑍 = ∅
3. ∀𝜎𝑡 ∈ 𝑇. ∀𝑚′

2
, 𝑠′

2
.

(T,Λ2 ,F), 𝐺𝑇 ⊢ (inl(𝐵𝑇), 𝜎𝑡) →∗
CFG (𝑚′

2
, 𝑠′

2
) =⇒ 𝑠′

2
≠ F

then 𝑠′
1
≠ F

2.5. Assignment Elimination 57

Here, as in the local block lemma, 𝑋 is an arbitrary set representing

the current and past variable versions (we instantiate this set 𝑋 with

the concrete initial versions for the global block theorem relating the

entry blocks; see Subsection 2.5.7). The set 𝑍 includes the set 𝑌 of new

variables (from the corresponding local block lemma) that are newly

constrained within the target block 𝐵𝑇 , but also includes any variables

newly constrained in any block reachable from 𝐵𝑇 .

Note that the third premise in the global block theorem here (non-failure

in the target) is analogous to the second premise in the global block

theorem for cycle elimination (Theorem 2.4.2 on page 45). The only

difference is that here non-failure in the target CFG is considered for

every state 𝜎𝑡 ∈ 𝑇, while in the case of cycle elimination only a single

state is considered. Also note that the global block theorem here does

not say anything about the postcondition in contrast to the theorem for

cycle elimination. The reason is that the postcondition is inserted into

the CFG prior to assignment elimination (see Subsection 2.4.8) and thus

the global block theorem need not consider the postcondition here.

2.5.5. Generating Proofs for Global Block Theorems

We automatically generate a proof for a global block theorem relating a

source block 𝐵𝑆 and a target block 𝐵𝑇 via the corresponding local block

theorem and the global block theorems relating the successors of 𝐵𝑆

and 𝐵𝑇 . To do so, we need to prove two properties on the unconstrained

versions 𝑍 at the beginning of 𝐵𝑇 . First, to use the local block theorem, we

need to prove that the newly constrained variables𝑌 within the execution

of 𝐵𝑇 are a subset of 𝑍. Second, to use the global block theorem relating

a successor 𝐵succ of 𝐵𝑇 , we need to prove that the unconstrained variable

versions at the beginning of 𝐵succ are a subset of the unconstrained versions

at the end of 𝐵𝑇 (the latter is given by 𝑍 \ 𝑌).

Tracking and checking the subset of these concrete sets of unconstrained

variable versions is simple, but gets expensive in Isabelle when the

sets are large. In particular, representing these sets leads to large terms,

which must be parsed and type-checked by Isabelle. Moreover, to check

the subset between large sets, Isabelle needs to perform many rewrite

steps. We circumvent this issue with our own global versioning scheme
(as opposed to the versions used by Boogie, which are independent for

different source variables): according to the CFG structure, we assign

a unique global version number verG(𝑥) to each variable 𝑥 in the target

program such that, if 𝑥 is first constrained in a target block 𝐵′
and 𝑦

is first constrained in another target block 𝐵′′
reachable from 𝐵′

, then

verG(𝑥) < verG(𝑦). We can then represent the unconstrained variable

versions efficiently via the minimum global version 𝑧 that has not yet

been constrained; 𝑧 represents the set {𝑥 | 𝑥 ≥ 𝑧}. As a result, one does

not have to make every single unconstrained variable version explicit.

Using this representation and the ordering property on the global version,

we can encode our subset properties much more cheaply via an integer

comparison. To check that 𝑀 ⊆ 𝑀′
, we just need to check if the minimum

version in 𝑀 is at least the minimum version in 𝑀′
. Moreover, we can

represent the set 𝑍 \ 𝑌 in the second property (where 𝑌 is a finite set)

via the maximum version in 𝑌 plus one if 𝑌 is non-empty (since we

58 2. Formally Validating a Verification Condition Generator

also check that 𝑌 ⊆ 𝑍).
26

Since we represent variables as integers in26: Note that {𝑥 | 𝑥 ≥ max(𝑌) + 1} is

potentially a strict subset of 𝑍 \ 𝑌 (i. e.
when there are versions smaller than

max(𝑌) in 𝑍 that are not in 𝑌). This is

fine, since the global version property

ensures that any future reachable block

will only use versions larger than max(𝑌).

the mechanisation, we directly use our global version as the variable

name for the target program; there is no need for an extra lookup table

when doing these subset checks. Note that (readability aside) it makes

no difference which variable names are used in intermediate CFGs; we

ultimately care only about validating the original CFG.

One question is whether one can always compute such a global version-

ing. If this were not the case, then our proof strategy with the more

efficient set computations would be incomplete: we would not be able to

generate a correct proof (and thus, Isabelle would not be able to check the

proof successfully) even though the transformation itself may be sound.

However, it turns out that for target programs generated by Boogie it is

possible to compute such a global versioning.

The main challenge to compute the existence of such a global versioning

is dealing with the synchronisation variables, which are constrained

in the predecessors of join blocks to synchronise executions (e.g. j4
in Figure 2.17). The reason is that these are the only variables not

constrained exactly as part of a single introduced assume command in

the target CFG and thus there are more ordering constraints that the global

version must ensure for these variables. To handle this challenge, we

compute a topological order on the blocks (starting from the entry block)

where the predecessors 𝑃 of a join block appear together consecutively

in the order (this implies that all predecessors of blocks in 𝑃 appear in

the order before any block in 𝑃 itself). We then iterate over the blocks in

this order and provide fresh global versions to each of the constrained

variables in the blocks incrementally (increasing the version by one,

each time we assign a new version). Whenever we reach a consecutive

sequence 𝑃 of predecessors of a join block in the topological order, we

assign versions to the synchronisation variables that are larger than those

provided to ancestor blocks of 𝑃 (i. e. a block from which some block in 𝑃

is reachable), since we have already processed each ancestor block of 𝑃

by that point.

One important reason why such a particular topological order exists and

the corresponding computation to establish a correct global versioning

is possible is because the empty block insertion (see Subsection 2.4.8)

ensures that every predecessor of a join block has only one successor

(namely the join block). In particular, this means that no predecessor

of a join block 𝐵 is reachable from any other predecessor of 𝐵, and

thus the global versions need not deal with constraints between the

predecessors. In the next subsection, we will discuss a concrete example

where assignment elimination would become unsound if empty blocks

were not inserted.

2.5.6. Two Important Properties

For assignment elimination to be sound in general, two important prop-

erties must hold on the source CFG, which are guaranteed by transfor-

mations prior to assignment elimination. The first property is that the

source (and thus target) CFG is acyclic, which is guaranteed by cycle

elimination. The second property is that the predecessor of every join

block 𝐵 has exactly one successor (namely 𝐵), which is guaranteed by

2.5. Assignment Elimination 59

assume y > 0 𝐵0

y := y-2 𝐵1

assert y > 0 𝐵2

assume y0 > 0
assume y2 == y0

𝐵′
0

assume y1 == y0-2
assume y2 == y1

𝐵′
1

assert y2 > 0 𝐵′
2

assume y0 > 0 𝐵′′
0

assume y1 == y0-2
assume y2 == y1

𝐵′′
1

assume y2 == y0 𝐵empty

assert y2 > 0 𝐵′′
2

Figure 2.19: An example showing why Boogie inserts empty blocks before eliminating assignments.

empty block insertion. We make neither of these properties explicit. If

the properties would not hold, then our proofs would fail. This shows

another instance where a per-run validation approach is simpler than

a once-and-for-all certification approach, which would likely have to

somehow make the two properties explicit. This is similar to how our

validation strategy for cycle elimination does not make any notion of

domination or CFG reducibility explicit.

If the first property (the source CFG is acyclic) did not hold, then

assignment elimination would be unsound in general because of the

following: A source update in a loop would not be captured by a single

target version 𝑣𝑡 , since the source update in a block 𝐵 could execute

multiple times assigning different values in the same execution. As a

result, one could not use a singleassume command to model the update. In

such a case, our proof strategy for global block theorems would not work

for two high-level reasons. First, we require that the global block theorems

of successors of a block 𝐵 can be independently proved from the global

block theorem of 𝐵. If the source CFG has cycles, our approach would

lead to circular dependencies and thus our proof strategy would fail. (For

cycle elimination, we devised an approach tailored to cycle elimination

that avoided circular dependencies arising from cycles in the source CFG;

such an approach would not work for assignment elimination.) Second,

there is no global versioning that ensures the ordering property for cyclic

CFGs in general, and thus one of the required properties on the versions

that we check as part of the proof would fail.

The second property’s purpose (the predecessor of every join block 𝐵

has exactly one successor) is to ensure that variables are correctly syn-

chronised at join blocks. If the property did not hold, then synchronising

variables at join blocks by simply adding the corresponding assume

commands in the predecessors would be unsound in general. Figure 2.19

illustrates this. Here, the source CFG at the top has a join block with

a predecessor that has multiple successors. The result of assignment

elimination applied to this source CFG directly is shown at the bottom

left. This result does not correctly capture the source CFG, because the

execution going from 𝐵′
0

to 𝐵′
1

constrains the synchronisation variable y2

60 2. Formally Validating a Verification Condition Generator

twice. As a result, this execution always goes to magic when reaching

the final command in 𝐵′
1
, since y2 and y1 never match. Thus, this target

CFG is correct (the executions going directly from 𝐵′
0

to 𝐵′
2

never fail),

even though the source CFG is not, which means the transformation is

unsound here. The transformation is sound if one first introduces an

empty block between 𝐵0 and 𝐵2 (which Boogie does), which establishes

the second property. This correct result is shown on the bottom right of

Figure 2.19.

2.5.7. Proving Soundness of this Transformation

Subsequence

To prove the soundness of assignment elimination, we need to show that

if the target procedure is correct, then the source procedure is correct.

To do so, we use the global block theorem relating the entry blocks in

the source and target CFGs representing the relevant procedure bodies;

we will refer to this theorem as the global entry theorem. This proof is

more involved than for cycle elimination (see Subsection 2.4.7 on page 48)

because (1) assignment elimination changes the declared variables (in

addition to the procedure bodies); thus the variable contexts and states

are different for the source and target, and (2) the global entry theorem

quantifies over a set of target states that capture a source state instead of

quantifying over a single target state.

To prove that the source procedure is correct (recall the formal defini-

tion shown in Definition 2.3.1 on page 32), we consider an arbitrary

well-formed type interpretation T, an arbitrary well-formed function

interpretation F, and an arbitrary well-typed state 𝜎𝑠 that satisfies the

axioms (when restricted to the constants).
27

We then prove that the source27: The definition quantifies over the

global and local state separately. 𝜎𝑠 in-

cludes both of them.

procedure body has no failing executions starting from 𝜎𝑠 with respect

to the source Boogie context Γ𝑠 = (T,Λ𝑠 ,F), where Λ𝑠 is the source

procedure’s variable context.

To conclude the proof, we must instantiate the universally quantified

variables in the global entry theorem such that the theorem’s conclusion

gives us the desired result, and must show the theorem’s premises. The

most interesting part is the instantiation of the set of target states 𝑇 that

must be related with the source state 𝜎𝑠 and for which we must show

that there is no failing target execution from any state in 𝑇 by using the

correctness of the target procedure. We instantiate 𝑇 with the set of target

states that (1) are well-typed w.r.t. Tand the target variable context Λ𝑡 ,

and (2) agree with 𝜎𝑠 according to the initial variable relation V𝑅 (i. e.
the initial variable versions in the target states are constrained using

the corresponding source variable values in 𝜎𝑠). We show that there

are no failing executions for an arbitrary target state 𝜎𝑡 ∈ 𝑇 by using

the correctness of the target procedure instantiated with T, F, and 𝜎𝑡 .
All premises of the correctness definition can be shown to hold, which

concludes the result. In particular, it is straightforward to show that the

axioms are satisfied in 𝜎𝑡 because in practice the names of the constants

in the target have the same names as the source variables. Since our

instantiation of 𝑇 also makes sure that constants in 𝜎𝑡 and 𝜎𝑠 coincide

(constants are a subset of the variables constrained by the initial variable

relation), and since we know that the axioms are satisfied in 𝜎𝑠 , the

2.5. Assignment Elimination 61

axioms must also be satisfied in 𝜎𝑡 (the axioms are the same in the source

and target).

Apart from this, one still needs to prove the remaining constraints of

the global entry theorem. For instance, we instantiate the universally

quantified variable 𝑋 in the global entry theorem with the set of variable

versions that are constrained before the target procedure body is executed

(i. e. all initial variable versions corresponding to the source variables and

procedure arguments). We must show that the set of variable versions

newly constrained within the target procedure body are disjoint from the

initial variable versions, which we do efficiently using the global variable

versions discussed in Subsection 2.5.5. Moreover, we must show that

𝑇 constrains at most our chosen 𝑋 w.r.t. the target variable context Λ𝑡 ,

which follows trivially from our choice of 𝑇.

2.5.8. Constant Propagation and Old Expression

Desugaring

As discussed, as part of the assignment elimination transformation,

the Boogie verifier performs constant propagation and desugars old

expressions. We will now discuss how to extend the approach presented

so far to incorporate both of these rewrites.

Constant propagation

Boogie’s constant propagation removes assignments of a constant literal

𝑐 to a variable 𝑥 and then replaces all related occurrences of 𝑥 by 𝑐, before

performing the remainder of assignment elimination transformation

discussed so far.
28

Related occurrences of 𝑥 are those that read the 28: Boogie does not implement constant

propagation as a separate transforma-

tion, but performs the constant propaga-

tion on-the-fly during assignment elimi-

nation.

value assigned to by the removed assignment; if another assignment

happens before the occurrence of 𝑥, then the occurrence is not affected.

For example, in Figure 2.17 on page 51 the assignment j := 0 in block

𝐵′
0

would be removed, and the occurrences of j in assert 𝐴 in 𝐵′
0

would

be replaced by 0. No other occurrences of j are affected, since the havoc

in 𝐵′
1

updates j before any of those occurrences.

Extending our approach to generate proofs in the presence of constant

propagation is straightforward. We do so by first extending the variable

relations V𝑅 used in our local block lemmas, global block theorems, and

in the definitions of expRel and assignElimRel (see Figure 2.18 on page 55

for the original definition) to relations that relate a source variable with a

target variable or a constant literal (instead of always relating a source

variable with a target variable). This extension permits tracking the

information needed to justify replacing a variable by a constant literal.

The relation between states w.r.t. such an adjusted relation V𝑅 is lifted in

a natural way: if V𝑅 relates a source variable 𝑥 with a constant literal 𝑐,

then the source state must map 𝑥 to 𝑐.

Second, we adjust the signature and definition of assignElimRel to deal

with constant propagation. We adjust the parameter for the variable

updates to also reflect updates that assign constant literals to variables.

Moreover, we add two additional rules for the definition of assignElimRel.
One rule captures assignments with constants literals in their right-hand

62 2. Formally Validating a Verification Condition Generator

Figure 2.20: An example show-

ing assignment elimination in

the presence of old expressions.

g is a global variable. The source

CFG is shown on the left and the

target CFG is shown on the right.

g := g+1
assert old(g+2) > g

𝐶0

assume g1 == g0+1
assert g0+2 > g1

𝐶′
0

side (instead of arbitrary expressions as already handled by rule assign-ae

in Figure 2.18) and the other rule captures synchronisation commands

for variables that are known to map to a constant literal. The generation

of proofs for assignElimRel judgements remains simple because even after

the addition of the two rules, it is always clear which rule to apply to

next.

Desugaring old expressions

Boogie replaces an old expression old(e) with e where each global

variable in e is replaced by the corresponding initial variable version in

the target, which captures the value that the global variable has at the

beginning of a procedure. As an example, consider Figure 2.20, where

the procedure consists of a single basic block and g is a global variable.

The old expression old(g+2) is replaced by g0+2 where g0 is the initial

variable version of g.

To handle old expressions in our certification, we track an initial version
mapping V0

𝑅
from source global variables to the initial target variable

version (in addition to the already-tracked variable relation V𝑅). We

include this mapping in our local block lemmas, global block theorems,

and in the definitions of expRel and assignElimRel. In our local block

lemmas and global block theorems, we consider states related by both

the variable relation V𝑅 and the initial version mapping V0

𝑅
. A source

state 𝜎𝑠 and a target state 𝜎𝑡 are related by the initial version mapping

V0

𝑅
if for each global variable 𝑔 that is mapped to 𝑔0 by V0

𝑅
, the old state

component in 𝜎𝑠 maps 𝑔 to the same value as the value stored for 𝑔0

in 𝜎𝑡 . With this adjusted state relation, it becomes possible to relate old

expressions in the source with the desugared expressions in the target.

2.6. VC Generation

In this section, we present our certificate generation approach for the

transformation subsequence including the final generation of the VC and

the peephole optimisations in the Boogie verifier (this is the certificate

connecting procedure 𝑃7 with the VC in Figure 2.1 on page 17). For the

sake of presentation, we will focus on the final generation of the VC in

this section and at the end briefly discuss the peephole optimisations.

Final VC generation has two main aspects: (1) it encodes and desugars all

aspects of the Boogie type system, employing additional uninterpreted

functions and axioms to express its properties [67]; program expression[67]: Leino et al. (2010), A Polymorphic
Intermediate Verification Language: Design
and Logical Encoding

elements such as Boogie functions are analogously desugared in terms

of these additional uninterpreted functions, creating a nontrivial logical

gap between expressions as represented in the VC and those from

2.6. VC Generation 63

the input program, and (2) it performs an efficient (block-by-block)

calculation of a weakest precondition for the (acyclic, passified) CFG,

resulting in a formula characterising its verification requirements, subject

to background axioms and other conditions.

In the following, we will first present the high-level structure of the VC

(Subsection 2.6.1) and how Boogie desugars the type system together

with the accompanying challenges for our certificate generation (Subsec-

tion 2.6.2). Then, we will discuss how to obtain the validity of Boogie’s

weakest precondition from the validity of the generated VC (Subsec-

tion 2.6.3) and how to generate certificates using the validity of Boogie’s

weakest precondition (Subsection 2.6.4). Finally, we briefly discuss the

peephole optimisations (Subsection 2.6.5).

Multiple type encodings

The Boogie verifier implementation contains multiple approaches

for the desugaring of Boogie’s type system, which can be selected

via command-line options. In our work, we support only the main

approach that was used by Boogie front-ends that use polymorphic

maps and universal type quantification (e.g. Dafny and Viper) when

we started the work and which was also the default Boogie option for

Boogie programs with these features at that time. This option can be

forced via the Boogie command-line argument /typeEncoding:p and

is one of the two approaches introduced by Leino and Rümmer [67].

We discuss one of the unsupported approaches (monomorphisation)

in future work in Section 2.12, which has more recently been extended

to support polymorphic maps and type quantification, and is now

the default option for programs with such features. Viper still uses

the type desugaring option that we support in our work. Dafny has

initiated experiments with monomorphisation, but still supports the

type desugaring option that we support in our work.

2.6.1. VC Structure

The VC generated by Boogie has the following overall structure (repre-

sented as a shallow embedding in our certificates):
29

29: Note that top-level quantification

over functions is implicit in the (first-

order) SMT problem generated by Boo-

gie; we quantify explicitly in our Isabelle

representation.

∀ VC quantifiers︸ ︷︷ ︸
type encoding parameters,

functions, variable values

. (VC hypothesis︸ ︷︷ ︸
type encoding,

func./var./prog. axioms

=⇒ CFG WP)

The VC quantifies over parameters required for the type encoding, as

well as VC counterparts representing the variable values and functions

in the Boogie program. The quantifier body is an implication, whose

hypothesis (i. e. left-hand side) contains: (1) conditions that axiomatise

the type encoding parameters, (2) axioms expressing the typing of

Boogie variables and functions, and (3) conditions directly relating to

axioms explicitly declared in the Boogie program. The conclusion of the

implication is an optimised version of the weakest (liberal) precondition

(WP) of the CFG.
30

30: One difference in our version of the

Boogie verifier is that we switched off the

generation of extra variables introduced

to report error executions [78]; these are

redundant for programs that do not fail

and further complicate the VC structure.

64 2. Formally Validating a Verification Condition Generator

2.6.2. Boogie’s Logical Encoding of the Boogie Type

System

We first explain Boogie’s logical encoding of its own type system. Boogie

values and types are represented at the VC level by two uninterpreted

carrier sorts 𝑉 and 𝑇, respectively. In particular, this means that types

are represented by VC terms of sort 𝑇. An uninterpreted function typvc

from 𝑉 to 𝑇 maps each value to the representation of its type.

Boogie type constructors are each modelled with an (injective) unin-

terpreted function 𝐶 with return sort 𝑇 and taking arguments (per

constructor parameter) of sort 𝑇. For example, a type constructor List

with a single type argument (used, for example, in Figure 2.10 on page 35)

is represented by an uninterpreted VC function List from 𝑇 to 𝑇. Unin-

terpreted functions modelling projection functions are also generated

for each type constructor (𝐶𝜋
𝑖

for each type argument at position 𝑖), e.g.
mapping the representation of a type List 𝑡 to the representation of type

𝑡. Axioms at the VC level are used to reflect the different constraints (e.g.
injectivity of constructors, projection of types). To reflect that two differ-

ent constructors generate different types, Boogie uses an uninterpreted

VC function cid from 𝑇 to the integers, using axioms to ensure that cid
maps types obtained via different constructors to different integers. All

uninterpreted functions at the VC level (which includes typvc
, constructor

functions, projection functions, and cid) are universally quantified in the

VC structure shown in Subsection 2.6.1.

The following three logical statements show the axioms that Boogie

generates at the VC level for the type constructors ref and List _

in Figure 2.10 on page 35:

cid(ref) = 4

∀𝑡 : 𝑇. cid(List(𝑡)) = 3

∀𝑡 : 𝑇. List𝜋
1
(List(𝑡)) = 𝑡

The first two axioms ensure that the types obtained via the two type

constructors are different. The third axiom ensures that the projection

function for the first type argument of List is as expected. Moreover, the

third axiom also ensures that List(𝑡1) and List(𝑡2) are different if 𝑡1 ≠ 𝑡2,

which reflects the fact that the type constructor List _ is injective.

A consequence of using the carrier sorts 𝑉 and 𝑇 is that Boogie must

embed the primitive types (e.g. integers and Booleans) into these sorts. For

example, for the integers, Boogie uses two uninterpreted VC functions:

(1) int2V, which maps integers to 𝑉 , and (2) V2int, which maps 𝑉 to

integers. Moreover, Boogie uses an uninterpreted VC constant (i. e. a

nullary uninterpreted function) IntType of sort 𝑇 to represent the integer

type in 𝑇. Boogie then generates the following VC axioms for these

functions for the example in Figure 2.10 on page 35:

∀𝑖 : int. V2int(int2V(𝑖)) = 𝑖

∀𝑣 : 𝑉. typvc(𝑣) = IntType ⇒ int2V(V2int(𝑣)) = 𝑣

cid(IntType) = 0

Here int denotes the built-in integer type supported by SMT solvers. The

2.6. VC Generation 65

first two axioms ensure that int2V and V2int are (partial) inverses of each

other. The last axiom ensures that the embedded integer type is different

from the other types (e.g. the references and lists).

Boogie’s type system encoding is used in the VC to recover Boogie typing

constraints for the untyped VC terms. Recovering the constraints is not

always straightforward due to discrepancies between the VC components

and the corresponding Boogie components, some of which are due to

optimisations performed by Boogie. These discrepancies complicate the

validation of VC generation.

For instance, each uninterpreted Boogie function is represented via

an uninterpreted VC function, which is untyped in the sense that the

function arguments and return value are of sort 𝑉 .
31

The VC function is 31: There is an exception: if a formal argu-

ment has a primitive type (e. g. the integer

type), then the VC function’s signature

also uses the corresponding primitive

type at the VC level.

then constrained via a VC axiom to have the correct types. For example,

the function cons in Figure 2.10 on page 35 is represented by a VC-level

function consvc
that takes two arguments of sort 𝑉 and returns a value

of sort 𝑉 . Boogie adds the following axiom constraining the types of

consvc
:

∀𝑥 : 𝑉, 𝑥𝑠 : 𝑉. typvc(consvc(𝑥, 𝑥𝑠)) = List(typvc(𝑥))

There are two discrepancies between the VC-level function consvc
and the

semantic interpretation of cons (as tracked by the function interpretation

in the Boogie semantics). First, consvc
takes two values as input, while the

corresponding semantic interpretation of cons additionally takes a type

as input for the type argument. As a consequence of the first discrepancy,

Boogie performs an optimisation: the axiom does not quantify over every

possible type. Instead, the axiom represents the type parameter via the

type of the first argument (i. e. typvc(𝑥)). Second, consvc
is represented as a

total function, while the semantic interpretation of the Boogie function

cons is a partial function that is constrained to be defined only in the

case when the arguments have the correct types. This discrepancy is also

reflected in the above axiom: the axiom requires typvc(consvc(𝑥, 𝑥𝑠)) to

always have the expected type, even if x and xs do not represent reference

and list values.
32

32: After we finished the Boogie cer-

tification work, the Boogie developers

changed the axiom to require the output

to have the correct type only if the argu-

ments have the correct type [79], because

not doing so led to issues beyond our

supported subset. Nevertheless, for the

subset that we support, the original VC

axioms are justifiable, as our generated

certificates show.

Boogie also optimises away the quantification of types in Boogie ex-

pressions in many cases. For example, consider the following axiom

from Figure 2.10 on page 35:

axiom (forall <T> ::

(forall x: T, xs: List T :: elem(x, cons(x, xs)))

);

The corresponding VC axiom is given by:

∀𝑥 : 𝑉, 𝑥𝑠 : 𝑉. typvc(𝑥𝑠) = List(typvc(𝑥)) ⇒ elemvc(𝑥, consvc(𝑥, 𝑥𝑠))

In this VC axiom, the type quantification has been eliminated. All

occurrences of T in the Boogie axiom have been translated to typvc(𝑥). This

optimisation reflects that this particular type quantification is redundant,

since T can be recovered from the type of 𝑥.

66 2. Formally Validating a Verification Condition Generator

2.6.3. Working from VC Validity

Our certificates show that the Boogie program right before the final

generation of the VC is correct if the generated VC is valid (certifying the

validity-checking of the VC by an SMT solver is an orthogonal concern).

However, to connect the VC validity back to the program requires first

constructing Isabelle-level semantic values to instantiate the top-level

quantifiers in the VC such that the corresponding VC hypothesis (left-

hand side of the VC) can be proved and, thus, the validity of the WP

(as represented in the VC) can be deduced (see the structure of the

VC in Subsection 2.6.1). Our goal is then to prove that the validity of

this WP implies that the corresponding Boogie procedure is correct.

To ensure that this proof actually is possible, we must ensure that our

instantiation yields a WP whose validity indeed implies the correctness of

the Boogie procedure. For example, a top-level VC quantifier modelling

a Boogie function 𝑓 must be instantiated with a mathematical function

that behaves in the same way as the semantic interpretation of 𝑓 for

arguments of the correct type.

Our instantiation of the top-level quantifiers depends on the type and

function interpretations for the uninterpreted Boogie functions and

types (e.g. to instantiate a top-level VC quantifier representing a Boogie

function), and also depends on an initial Boogie state to instantiate the

top-level VC quantifiers representing Boogie variables. Recall that the

function interpretation, type interpretation, and initial Boogie state are

universally quantified in the procedure correctness (see Subsection 2.3.4

on page 31). When showing that the validity of the VC implies the

correctness of the corresponding procedure, we first fix an arbitrary well-

formed function interpretation, well-formed type interpretation, and

initial well-typed state, such that we can then choose the VC quantifiers

using these parameters.

We instantiate the carrier sort𝑉 for values in the VC with the correspond-

ing type denoting Boogie values in our formalisation and we instantiate

the carrier sort 𝑇 for types to be all Boogie types that do not contain

free variables (i. e. closed types). Constructing explicit models for the

quantified functions used to model Boogie’s type system (satisfying,

for example, suitable inverse properties for the projection functions) is

straightforward. For example, the VC-level function typvc
that maps each

value of 𝑉 to a type of 𝑇 is instantiated to be 𝜆𝑣. typT(𝑣), where T is

the type interpretation and typT(𝑣) returns the type of 𝑣 w.r.t. T. For the

VC-level variable values, we can directly instantiate the corresponding

values in the initial Boogie program state.
33

33: There is only one VC-level variable

per Boogie program variable, since the

Boogie program considered right before

final VC generation has no variable up-

dates and thus every Boogie variable has

a single value throughout a single execu-

tion.

VC-level functions representing those declared in the Boogie program

are instantiated as (total) functions which, for input values of appropriate
type (the arguments and output are untyped values of sort 𝑉), are

defined simply to return the same values as the corresponding function

in the function interpretation. As discussed in Subsection 2.6.2, perhaps

surprisingly, Boogie’s VC embedding of functions includes an axiom

that requires the VC functions to return values of the specified return

type even if the input values do not have the types specified by the

function. In such cases, to make sure that this axiom holds, we define the

instantiated function to return some value of the specified return type,

which is possible since in well-formed type interpretations every closed

2.6. VC Generation 67

type has at least one value associated with this type. For example, the

instantiation for the function cons in Figure 2.10 is given by the following

Isabelle function:

consvc(𝑥, 𝑥𝑠) = case consinterp([typT(𝑥)], [𝑥, 𝑥𝑠]) of
Some(res) ⇒ res
None ⇒ SOME 𝑣. typT(𝑣) = List(typT(𝑥))

Here, consinterp
is the semantic interpretation of cons as tracked in the

function interpretation, and T is the type interpretation. So, our VC

instantiation for cons returns the same value as the semantic interpre-

tation if the semantic interpretation is defined on the input values and

otherwise returns some value whose type is a list. For the former case,

we must provide a concrete type to the semantic interpretation consinterp

for the type parameter in cons, which we do via the type of the first

argument. For the latter case, we use Hilbert’s epsilon operator (denoted

via SOME 𝑣. 𝑃(𝑣) in Isabelle), which picks some value that satisfies the

specified predicate (if such a value exists, which it does in this case as

discussed above).

After our instantiation, we need to prove the hypothesis of the VC’s

implication. In particular, we need to prove that all axioms generated

by the type system encoding and those coming from the program itself

are satisfied. The former are standard and simple to prove (given the

work above). The latter (i. e. the axioms declared in the Boogie program

itself) largely follow from the assumption that each declared axiom must

be satisfied in the initial state restricted to the constants. In this latter

case, the only remaining challenge is to relate each Boogie axiom (given

by a Boogie expression) with the corresponding VC expression in the

hypothesis of the VC’s implication; a challenge which also arises (and

whose solution is explained) below, where we show how to connect the

validity of the instantiated WP to the correctness of the corresponding

procedure.

Dependent types for the instantiation of the carrier sorts for alter-

native versions of the Boogie semantics

As an aside, if one were to consider alternative versions of our

Boogie semantics formalised in Section 2.3 on page 24, then it turns

out that one would need dependent types (i. e. types that depend on

values) in order to accurately instantiate the carrier sorts 𝑉 and 𝑇

in the VC, as we will discuss below. Since Isabelle does not support

dependent types, this means one would not be able to represent

the VC via a shallow Isabelle embedding as we do now (at least not

with our current approach of dealing with the VC). A workaround

to support such alternative versions of the Boogie semantics would

be to represent the VC using a deep embedding in Isabelle instead

of a shallow embedding. The satisfiability of a deeply embedded VC

would be parameterised by an interpretation of the uninterpreted

sorts. This interpretation could then be represented by a mapping

from the type used to represents sorts to sets of values of some carrier

type (this carrier type would be a type argument of the definition of

satisfiability).

68 2. Formally Validating a Verification Condition Generator

One example where one would need dependent types is the following.

In Subsection 2.3.3, we discussed an alternative semantics for the

quantification of types in Boogie that quantifies over only those

Boogie types that are constructible via type constructors declared in

the program, instead of considering all possible type constructors

(even those not declared in the program). To reflect this alternative

semantics directly in the VC, the instantiation of the carrier sort 𝑇

would have to capture just those Boogie types constructible via the

declared type constructors in the program. This instantiation of 𝑇

would thus have be a dependent type at the level of Isabelle, since the

instantiation depends on the type constructors declared in the Boogie

program.

Another example is if one changes the type interpretation in the Boogie

semantics to be a partial mapping from abstract values to closed types

obtained via type constructors instead of a total mapping. In this case,

the instantiation of the carrier type 𝑉 would have to contain only the

primitive values and those abstract values that have a type according

to the type interpretation. This instantiation is again a dependent

type, since this instantiation depends on the type interpretation.

2.6.4. Certifying the VC Generation

Boogie’s weakest precondition calculation is made size-efficient by

the usage of explicit named constants for the weakest preconditions

𝑤𝑝(𝐵, true) for each block 𝐵, which is defined in terms of the named

constants for its successor blocks. By 𝑤𝑝(𝐵, true) we mean the weak-

est precondition of the entire Boogie CFG starting from block 𝐵 w.r.t.

postcondition true (since in this notation here 𝐵 also represents execu-

tions going beyond block 𝐵, only postcondition true is relevant). For

example, in Figure 2.17 on page 51, 𝑤𝑝(𝐵′′
2
, true) is given by 𝑖𝑣𝑐

1
≠ 0 =⇒

𝑤𝑝(𝐵′′
3
, true) ∧ 𝑤𝑝(𝐵′′

4
, true). Here, 𝑖𝑣𝑐

1
is the value that we instantiated

for the quantified VC variable corresponding to the Boogie variable i1.

We exploit this modular construction of the generated weakest precondi-

tion for the corresponding local and global block theorems. We prove

the following local block lemmas for each block:

Theorem 2.6.1 (VC generation local block lemma) Let 𝐵 be a block with
commands cs in the source CFG 𝐺 and let Λ be the variable context for the
procedure. Let T, F, 𝜎 be the type interpretation, function interpretation,
and initial Boogie state considered for the proof. Then, for any outcome 𝑠′, the
following must hold: if

1. (T,Λ,F) ⊢ ⟨cs,N(𝜎)⟩ [→] 𝑠′
2. 𝑤𝑝(𝐵, true)

then 𝑠′ ≠ F and if 𝑠′ is a normal outcome, then

∀𝐵suc ∈ successors(𝐺, 𝐵). 𝑤𝑝(𝐵suc , true)

We use the local block lemmas to prove the following global block

theorems for each block (in reverse-topological order of the CFG):

2.6. VC Generation 69

Theorem 2.6.2 (VC generation global block theorem) Let 𝐵 be a block in
the source CFG 𝐺 and let Λ be the variable context for the procedure. Let T,
F, 𝜎 be the type interpretation, function interpretation, and initial Boogie
state considered for the proof. Then, for any CFG configuration (𝑚′, 𝑠′), the
following must hold: if

1. (T,Λ,F), 𝐺 ⊢ (inl(𝐵),N(𝜎)) →∗
CFG (𝑚′, 𝑠′)

2. 𝑤𝑝(𝐵, true)

then 𝑠′ ≠ F.

Combining the local block lemmas to obtain the corresponding global

block theorems is straightforward. The main challenge is the automatic

proof generation for the local block lemma itself for a block 𝐵 such that

Isabelle can automatically check the proof. Our automation approach

decomposes the proof by considering each command in 𝐵 separately,

starting from the first command in 𝐵 and then continuing with the

remaining commands iteratively. We outline this decomposition next.

At the point of the final VC generation transformation, each command in

a block 𝐵 must be either an assume or an assert command. If the first

command is assume 𝑒 for some 𝑒, we rewrite 𝑤𝑝(𝐵, true) into the form

𝑒𝑣𝑐 =⇒ 𝐻, where 𝑒𝑣𝑐 is the VC counterpart of 𝑒 and where 𝐻 corresponds

to the weakest precondition of the remaining commands. This rewriting

may involve undoing certain optimisations on the formula structure,

which Boogie performs. For instance, Boogie sometimes converts 𝑒𝑣𝑐 =⇒
𝑒′ =⇒ 𝑒′′ =⇒ 𝐴 to (𝑒𝑣𝑐 ∧ 𝑒′) =⇒ (𝑒′′ =⇒ 𝐴); one reason is to decrease

the maximum depth of the Boogie implementation’s abstract syntax

tree representation for formulas. Next, we prove that 𝑒 evaluates to 𝑒𝑣𝑐

in the initial Boogie state (we illustrate below how we generate this

proof automatically). Hence, if 𝑒 evaluates to true (i. e. the execution does

not go to magic), then 𝐻 must be true because we may assume that

𝑤𝑝(𝐵, true) holds according to the local block lemma. So, we continue

with the same process using the second command in 𝐵 with 𝐻 as the

corresponding weakest precondition. If the first command is assert 𝑒,

then the approach is similar to the assume case: we rewrite 𝑤𝑝(𝐵, true)
to 𝑒𝑣𝑐 ∧ 𝐻 (which may again involve undoing optimisations). Thus, both

𝑒𝑣𝑐 and 𝐻 must hold. As in the assume case, we prove that 𝑒 evaluates

to 𝑒𝑣𝑐 in the initial Boogie state. Thus, 𝑒 must evaluate to true (since 𝑒𝑣𝑐

holds) and hence assert 𝑒 does not fail. We then continue with the same

process using the second command in 𝐵 with 𝐻 as the corresponding

weakest precondition.

In our decomposition, as mentioned, our proof automation rewrites the

weakest precondition into a specific form at various points. To simplify

this automatic rewriting, we instrument the Boogie verifier such that

it produces hints for each command for which the verifier performs

optimisations for the corresponding weakest precondition. Our proof

automation, expressed via a custom Isabelle tactic, uses these hints to

rewrite the weakest precondition into the desired form as specified in

the previous paragraph.

To make some of these optimisations and the corresponding hints more

concrete, consider Figure 2.21, which illustrates the weakest precondition

that Boogie generates for the example in Figure 2.10 on page 35. The

70 2. Formally Validating a Verification Condition Generator

assume !elem(null, xs) 𝐵0

assume y != null
assume z != null
assume ys1 == cons(y, cons(z, xs))
assert !elem(null, ys1)
assert forall r: ref :: elem(r, xs)⇒ elem(r, ys1)

𝐵1

𝑤𝑝(𝐵0 , true) ≜ ¬elemvc(nullvc , xsvc) ⇒ 𝑤𝑝(𝐵1 , true)

𝑤𝑝(𝐵1 , true) ≜
yvc ≠ nullvc ⇒
zvc ≠ nullvc ∧ ysvc

1
= consvc(yvc , consvc(zvc , xsvc)) ⇒

¬elemvc(nullvc , ysvc
1
) ∧[

¬elemvc(nullvc , ysvc
1
) ⇒ ∀𝑟 : 𝑉. (typvc(𝑟) = ref ∧ elemvc(𝑟, xsvc)) ⇒ elemvc(𝑟, ysvc

1
)
]

Figure 2.21: The source CFG (top) on which final VC generation is applied for the example in Figure 2.10 on

page 35 and the corresponding weakest preconditions for the blocks (bottom) as computed by the Boogie

verifier.

representation of the generated weakest precondition for block 𝐵1 (i. e.
𝑤𝑝(𝐵1 , true)) contains two optimisations that our rewritings undo, in

order to systematically decompose the weakest precondition.

A first optimisation is that the VC counterparts for the second and third

assume commands of 𝐵1 are combined into a single conjunction. That

is, the weakest precondition from the second command onwards is

represented by (zvc ≠ nullvc ∧ ysvc
1
= · · ·) ⇒ 𝐻 instead of the standard

representation zvc ≠ nullvc ⇒ ysvc
1

= · · · ⇒ 𝐻. In general, Boogie

sometimes combines more than two assume commands together like

this, and since expressions in assume commands themselves may contain

conjunctions it is nontrivial to determine how many commands were

combined. In such a case, our instrumentation generates a hint for the

first assume command that is combined indicating how many of the

following assume commands are combined (e.g. in the example, a hint

would be generated for assume z != null).

A second optimisation is that the weakest precondition from the com-

mand assert !elem(null, ys1) onwards is represented via a conjunc-

tion combined with an implication. That is, the weakest precondition is

represented as ¬elemvc(nullvc , ysvc
1
) ∧ (¬elemvc(nullvc , ysvc

1
) ⇒ 𝐻) instead

of the standard representation ¬elemvc(nullvc , ysvc
1
) ∧ 𝐻. There are other

cases, where this optimisation is not performed.
34

Our instrumenta-34: The optimisation is called subsump-
tion in Boogie and can be disabled via

a user-specified attribute on the assert

command.

tion generates hints for each assert command specifying whether this

optimisation is performed.

Automatically proving that a Boogie expression evaluates to its VC

counterpart

For the automatic proof generation of the local block lemma and also for

discharging the conditions in the VC hypothesis related to the Boogie

program axioms, we need to automatically prove that a Boogie expression

2.6. VC Generation 71

(T,Λ,F),Ω ⊢ ⟨𝑒1 , 𝜎⟩ ⇓ BoolVal(e1
vc)

(T,Λ,F),Ω ⊢ ⟨𝑒2 , 𝜎⟩ ⇓ BoolVal(e2
vc) (conj-vc)

(T,Λ,F),Ω ⊢ ⟨𝑒1 ∧ 𝑒2 , 𝜎⟩ ⇓ BoolVal(e1
vc ∧ e2

vc)

∀𝜏. closed(𝜏) =⇒ (T,Λ,F),Ω(𝑡 ↦→ 𝜏) ⊢ ⟨𝑒 , 𝜎⟩ ⇓ BoolVal(𝑃(𝜏))
(forallt-vc)

(T,Λ,F),Ω ⊢ ⟨forall ⟨𝑡⟩ :: 𝑒 , 𝜎⟩ ⇓ BoolVal(∀𝑡 : 𝑇.𝑃(𝑡))

∀𝜏. closed(𝜏) =⇒ (T,Λ,F),Ω(𝑡 ↦→ 𝜏) ⊢ ⟨𝑒 , 𝜎⟩ ⇓ BoolVal(evc)
(forallt-opt-vc)

(T,Λ,F),Ω ⊢ ⟨forall ⟨𝑡⟩ :: 𝑒 , 𝜎⟩ ⇓ BoolVal(evc)

closed(substT(Ω, 𝜏))
∀𝑤. typT(𝑤) = substT(Ω, 𝜏) ⇒ (T,Λ,F),Ω ⊢ ⟨𝑒 , (os, gs, ls(𝑥 ↦→ 𝑤))⟩ ⇓ BoolVal(𝑃(𝑤))

∀𝑤.¬𝑃(𝑤) ⇒ typT(𝑤) = substT(Ω, 𝜏) (forall-vc)
(T,Λ,F),Ω ⊢ ⟨forall 𝑥 : 𝜏 :: 𝑒 , (os, gs, ls)⟩ ⇓ BoolVal(∀𝑣 : 𝑉. 𝑃(𝑣))

Figure 2.22: Selected syntax-directed rules to relate a Boogie expressions with a VC-level expression.

𝑒 evaluates in a state 𝜎 to its VC counterpart evc
, which is formally

expressed by the following statement:

(T,Λ,F),Ω ⊢ ⟨𝑒 , 𝜎⟩ ⇓ BoolVal(evc) (2.3)

Note that evc
is a shallowly embedded Isabelle formula that includes

the instantiations of quantified variables, which we constructed above.

Hence, evc
is a Boolean value in Isabelle, and thus must be wrapped by

the Boogie value constructor BoolVal(·) in order to be lifted to a Boogie

value.

Our approach for automatically proving properties such as statement 2.3

works largely on syntax-driven rules. Our approach must account for the

discrepancies between the Boogie program and the VC representation

such as the mismatching function signatures, and the adjustments and

optimisations that Boogie made either to the formula structure or via the

type system encoding (see Subsection 2.6.2). We handle some of these

discrepancies by rewriting the formula into a standard form that we

require for our syntax-driven rules or by capturing such a discrepancy

directly in a syntax-driven rule, and in other cases we directly work with

the provided formula. All cases are automated using Isabelle tactics.

Figure 2.22 shows some of the syntax-directed rules that our proof

automation applies to prove that a Boogie expression evaluates to its

VC counterpart. Rule conj-vc relates a Boogie conjunction with a VC

conjunction by splitting the evaluation into the two conjuncts. There

are two rules for relating universal type quantifications: rule forallt-vc

handles the case when the type quantification is not optimised away in

the VC, while rule forallt-opt-vc handles the case when it is optimised

away (we showed an example where such an optimisation is applied

in Subsection 2.6.2 on page 64).

Rule forall-vc relates universal value quantifications for non-primitive

types (the corresponding rule for primitive types is simpler). The first two

premises require that (1) the quantified type has no free variables after

72 2. Formally Validating a Verification Condition Generator

substituting the type variables tracked by Ω and (2) the quantifier bodies

are related for any value of the specified type. The third premise requires

that if the VC quantifier body does not hold for some quantified value,

then it must be the case that the quantified value has the specified type.

This third premise is necessary to ensure that if the VC quantification is

false, then the witness showing this negative result can be mapped back

to a witness showing that the Boogie quantification evaluates to false. In

practice, 𝑃(𝑤) is of the form typvc(𝑤) = · · · ⇒ evc
, so its negation satisfies

typvc(𝑤) = · · · , which is sufficient to prove the third premise. Moreover,

note that typvc(𝑤) = · · · ⇒ evc
is syntactically not in sync with the Boogie

quantifier body 𝑒 due to the left-hand side typvc(𝑤) = · · · . As a result, our

Isabelle tactic, when proving the second premise of forall-vc, rewrites

typvc(𝑤) = · · · ⇒ evc
to evc

(by proving typvc(𝑤) = · · ·) before proceeding,

which is possible due to the hypothesis in the second premise expressing

that the quantified value 𝑤 has the specified type.

Our Isabelle tactic applies our syntax-directed rules until a Boogie

expression and corresponding VC expression are reached for which none

of the rules apply. At this point, our tactic instead uses the expression

evaluation rules shown in Figure 2.4 on page 29 and Figure 2.5 on

page 30. Working with the standard expression evaluation rules leads to

more complex proof obligations, because these rules do not constrain the

shape of the corresponding VC expression. While our tactic is still able

to prove many examples where such more complex proof obligations

arise, there are examples where our tactic cannot complete the proof

because the Isabelle tactic that we apply at particular points is not able

to solve the resulting proof goals. In particular, we have experienced

incompletenesses for certain function call cases, because we currently

do not have a syntax-directed rule for function calls, and thus our tactic

applies the standard expression evaluation rule for function calls. As

our evaluation (Section 2.10) shows, examples taken from the Boogie

test suite where our automation fails are rare, but such examples could

appear more frequently when considering Boogie programs from other

sources. Fixing our automation to deal with these cases via more syntax-

directed rules should be conceptually straightforward, but will require

some nontrivial engineering effort since one must distinguish between

different cases for function calls. We discuss one particular function call

case where our tactic does not work well, and briefly discuss how one

could fix our tactic to deal with such cases.

For instance, our tactic does not work well in cases where the VC uses

conversion functions to transform function call values of the carrier type

𝑉 to a primitive type. Such conversions occur, for instance, in calls to a

polymorphic function 𝑓 that takes a type argument 𝑇 and that returns a

value of type 𝑇. For instance, consider the Boogie function

function hd<T>(xs: List T) : T

A function call hd(xs), where xs is of type List int, is in some contexts

translated to the VC function call V2int(hdvc(xs)), where V2int(·) converts

a value of the carrier type 𝑉 to an integer at the VC level. To handle

such an occurrence, we would have to prove that hdvc(xs) returns a value

in 𝑉 that corresponds to an integer, which requires proving that xs
indeed has type List int. Our automation currently does not do this.

A solution would be to have a syntax-directed rule for function calls

2.7. CFG Optimisations 73

where the automation uses different approaches depending on whether a

conversion occurs; in the case of a conversion, the automation would prove

the necessary typing constraints. Such an extension to our automation

must distinguish different cases (e.g. whether a conversion occurs or

not) and must incorporate proofs showing that Boogie expressions are

well-typed (and thus the corresponding VC values also have the expected

type) to prove the necessary typing constraints. For the latter, we already

have automation (proving that a Boogie expression is well-typed), but

one still needs to incorporate this type constraint reasoning into the

overall tactic.

2.6.5. Peephole Optimisations

Peephole optimisations, which are also included as part of the final

VC generation certificate, prune unreachable blocks and remove empty

blocks. Dealing with these transformations is straightforward. We will

discuss what the pruning of unreachable blocks does and how to validate

it when discussing the CFG optimisations (see Subsection 2.7.4 on

page 79), which contain the same pruning transformation. We discuss

our validation of the removal of empty blocks next.

When an empty block 𝐵 is removed, there is no corresponding weakest

precondition for 𝐵, and so we cannot directly use the approach discussed

above. Instead, we identify the set of all non-empty blocks 𝐸 that are

reachable from 𝐵 by visiting only empty blocks first. The blocks in 𝐸

are the first blocks reached from 𝐵 that are not removed. As a result,

the blocks in 𝐸 are captured in the generated weakest precondition and

the weakest precondition of 𝐵 is captured in the generated weakest

precondition by the conjunction of the weakest preconditions of the

blocks in 𝐸. Therefore, we show a global block theorem for 𝐵 where the

weakest precondition in the premise is the conjunction of the weakest

preconditions of 𝐸. Such global block theorems are straightforward to

prove and allow the rest of the approach to work as presented.

This concludes our discussion of the certification of Boogie’s three key

transformations: cycle elimination, assignment elimination, and final

VC generation. In the following sections, we will discuss the remaining

two transformations in the pipeline: the CFG optimisations, and the

AST-to-CFG transformation.

2.7. CFG Optimisations

In this section, we present our certificate generation approach for the

CFG optimisations that the Boogie verifier performs right after the AST-

to-CFG transformation (in Figure 2.1 on page 17, the CFG optimisations

are shown between 𝑃2 and 𝑃3). The CFG optimisations, for our supported

Boogie subset, consist of three separate transformations: (1) a subset of

unreachable blocks are pruned, (2) blocks are coalesced to reduce the

number of blocks, (3) dead variables are eliminated.

As discussed in Section 2.2, our generated certificates support only (1)

and (2). Figure 2.23 illustrates this. We generate a single certificate that

74 2. Formally Validating a Verification Condition Generator

𝑃2 𝑃21 𝑃22 𝑃3

Dead variable

elimination

Unreachable block

pruning Block coalescing

correct(𝑃3) |= correct(𝑃
21
)

Figure 2.23: The transformations applied by Boogie as part of the CFG optimisations on source procedure 𝑃2

resulting in a target procedure 𝑃3. Our generated certificates currently capture unreachable block pruning

and block coalescing (dotted edge in blue), but not dead variable elimination. If there are no dead variables,

then 𝑃2 = 𝑃21 and as a result, we are able to validate the entire Boogie pipeline when combining the certificate

shown by the dotted edge here with the certificates for the other transformations.

covers both (1) and (2) (analogously to how our generated certificate

for cycle elimination covers multiple transformations). If there are no

dead variables (and thus (3) has no effect), then we can combine the

certificate for (1) and (2) with the generated certificates for the other

transformations to validate the entire Boogie pipeline. Otherwise, we

combine the generated certificates to cover the entire Boogie pipeline

excluding the elimination of dead variables. Concretely, in this latter

case, our combined certificate shows that the validity of the VC implies

the correctness of the procedure after dead variable elimination (but

before the other two optimisations; the corresponding procedure is 𝑃21

in Figure 2.23) and a certificate showing the soundness of the AST-to-

CFG transformation. That is, one must currently trust that dead variable

elimination is correct if dead variables exist (i. e. correctness of 𝑃21 implies

correctness of 𝑃2 in Figure 2.23).

There are two main differences when formally validating the CFG opti-

misations compared to the previously discussed transformations: (1) in

the CFG optimisations, both the source and the target CFG can be cyclic,

and (2) due to the coalescing of blocks, a single block in the target CFG

must be related to multiple blocks in the source CFG. We will first discuss

how we validate the coalescing of blocks, which shows how to deal

with both of these differences. At the end, we discuss how to deal with

the pruning of unreachable blocks. More details can be found in Lukas

Himmelreich’s BSc thesis [62], which was supervised by the author of[62]: Himmelreich (2023), Formally Vali-
dating the CFG Optimization Phase of the
Boogie Program Verifier

this dissertation.

2.7.1. Validation Approach for Block Coalescing

Boogie coalesces two blocks 𝐵0 and 𝐵1 into a single block if 𝐵0 has 𝐵1

as its only successor and 𝐵1 has 𝐵0 as its only predecessor. In general,

Boogie applies coalescing until it is no longer possible, which means

that an arbitrary large sequence of blocks may be coalesced into a single

block. The commands themselves remain the same. Figure 2.24 shows a

concrete example where block coalescing has an effect. Here, the source

blocks 𝐵0, 𝐵1, and 𝐵2 are coalesced into the target block 𝐵′
0
, and the

source blocks 𝐵5 and 𝐵6 are coalesced into the target block 𝐵′
5
.

For the validation of block coalescing, we do not define separate local

block lemmas relating source and target commands of single blocks,

since the commands remain unchanged; it is sufficient to just check

whether the commands in the source and target match. However, we

still define global block theorems that relate source and target executions

2.7. CFG Optimisations 75

i := i+5 𝐵0

assume j > 0
assume i > 0

𝐵1

j := j+1 𝐵2

j := j+i 𝐵3
j := j*j 𝐵4

assert j > 0 𝐵5

assert i+j > 0 𝐵6

i := i+5
assume j > 0
assume i > 0
j := j+1

𝐵′
0

j := j+i 𝐵′
3

j := j*j 𝐵′
4

assert j > 0
assert i+j > 0

𝐵′
5

Figure 2.24: Example showing the application of block coalescing to the source CFG on the left, which results

in the target CFG on the right.

throughout the CFG. A difference to the previous transformations is that

in the case when a source block is coalesced, we cannot phrase the global

block theorem by relating executions starting from the source block and

executions starting from the corresponding target block 𝐵𝑇 . Instead, we

need to relate executions starting from the source block with executions

starting from the corresponding intermediate command in 𝐵𝑇 . For instance,

executions that begin in the coalesced block 𝐵1 in Figure 2.24 should be

related with executions that begin right before command assume j > 0

in block 𝐵′
0
.

The second difference compared to the previously discussed transfor-

mations is that both the source and target CFGs may be cyclic. For cycle

elimination (Section 2.4), we presented a validation approach to deal with

cyclic source CFGs and acyclic target CFGs. For the CFG optimisations,

we use a similar approach as for cycle elimination to deal with cycles. To

prove a global block theorem for a loop head, we perform an induction

proof. Global block theorems for blocks within loops have as premises

the corresponding induction hypotheses of each loop that the block is

contained in. When proving a global block theorem for a block that is an

origin of a back edge that goes back to a loop head 𝐵𝐻 , we can use the

corresponding induction hypothesis to justify executions that go back to

𝐵𝐻 .

A difference to the validation of cycle elimination is how we obtain

the order in which the global block theorems are proved such that a

global block theorem for a block can be proved using the theorems of the

corresponding successors (i. e. proving the global block theorems without

inducing any circular dependencies between the global block theorems).

For cycle elimination, we were able to use the reverse-topological order of

the target CFG since the target CFG was acyclic. For the CFG optimisations,

we do something similar conceptually: we use the reverse-topological

order of the target CFG without its back edges (i. e. edges from within a

loop back to the loop head). Since Boogie already computes the back edges

of the target CFG to perform cycle elimination, we need not recompute

the back edges.

76 2. Formally Validating a Verification Condition Generator

2.7.2. Global Block Theorems

To make our validation approach more concrete, we will now show the

formal definitions of the global block theorems that we automatically

generate and prove (one per source block). We distinguish between two

kinds of global block theorems: (1) a global standard block theorem that we

prove if the source block is not coalesced and (2) a global coalesced block
theorem that we prove if the source block is coalesced.

Global standard block theorem

The global standard block theorem is given by:

Theorem 2.7.1 (CFG optimisations global standard block theorem) Let
Λ be the variable context of the source and target procedure. Let 𝑄post be the
postcondition of the procedure. Let 𝐺𝑆 be the source CFG and let 𝐺𝑇 be the
target CFG. Let 𝐵𝑆 be a source block and let 𝐵𝑇 be the corresponding target
block. For any source block 𝐵, let LH(𝐵) be the set of loop heads of the loops
that 𝐵 is contained in (excluding 𝐵 if 𝐵 is a loop head). For any source loop
head 𝐵, let Trg(𝐵) be the corresponding block in the target CFG.

Then, for any type interpretation T, any function interpretation F, any state
𝜎, any CFG configuration (𝑚′

1
, 𝑠′

1
), and any number of execution steps 𝑖 the

following must hold: if

1. (T,Λ,F), 𝐺𝑆 ⊢ (inl(𝐵𝑆),N(𝜎)) →𝑖
CFG (𝑚′

1
, 𝑠′

1
)

2. ∀𝑚′
2
, 𝑠′

2
. (T,Λ,F), 𝐺𝑇 ⊢ (inl(𝐵𝑇),N(𝜎)) →∗

CFG (𝑚′
2
, 𝑠′

2
) =⇒

validConfig(T,Λ,F, 𝑄post , (𝑚′
2
, 𝑠′

2
))

3. ∀𝐵𝐻 ∈ LH(𝐵𝑆).
loopIHOpt(T,Λ,F,Ω, (𝐺𝑆 , 𝐺𝑇), (𝐵𝐻 , Trg(𝐵𝐻)), 𝑖 , 𝑄post , (𝑚′

1
, 𝑠′

1
))

then validConfig(T,Λ,F, 𝑄post , (𝑚′
1
, 𝑠′

1
)) holds

This global standard block theorem is essentially a simpler version of

the global block theorem used for cycle elimination (Theorem 2.4.2 on

page 45). One difference is that for the CFG optimisations, the absence of

failing target executions (second premise) must take the postcondition

into account, since the postcondition is inserted into the CFG only later.

Another difference is that the induction hypothesis loopIHOpt tracked

for each loop in the premises is defined differently. The definition of

loopIHOpt is given by:

Definition 2.7.1 (loopIHOpt) Let 𝐵𝐻 be a loop head in the source CFG
𝐺𝑆 and let 𝐵′

𝐻
be the corresponding loop head in the target CFG 𝐺𝑇 . Then,

loopIHOpt(T,Λ,F,Ω, (𝐺𝑆 , 𝐺𝑇), (𝐵𝐻 , 𝐵
′
𝐻
), 𝑖 , (𝑚′

1
, 𝑠′

1
), 𝑄post) holds iff for

all 𝑗 where 𝑗 ≤ 𝑖 and all states 𝜎 the following holds: if

1. (T,Λ,F), 𝐺𝑆 ⊢ (inl(𝐵𝐻),N(𝜎)) →𝑗

CFG (𝑚′
1
, 𝑠′

1
)

2. ∀𝑚′
2
, 𝑠′

2
. (T,Λ,F), 𝐺𝑇 ⊢ (inl(𝐵′

𝐻
),N(𝜎)) →∗

CFG (𝑚′
2
, 𝑠′

2
) =⇒

validConfig(T,Λ,F, 𝑄post , (𝑚′
2
, 𝑠′

2
))

then validConfig(T,Λ,F, 𝑄post , (𝑚′
1
, 𝑠′

1
)) holds.

2.7. CFG Optimisations 77

This definition directly reflects the global standard block theorem, except

that there is no premise containing the induction hypothesis for each of

the loops in which the loop head 𝐵𝐻 is contained. The reason for omitting

this premise is the same as discussed for cycle elimination’s induction

hypothesis (Definition 2.4.2 on page 46): the corresponding premise

in the global standard block theorem for 𝐵𝐻 is sufficient to ensure the

hypotheses hold.

One difference to the cycle elimination transformations’s induction

hypothesis is that the premise requiring the absence of failing executions

in the target CFG must be included here in Definition 2.7.1, while it could

be omitted for the cycle elimination case. The reason it must be included

here is the following. For the CFG optimisations, loop iterations in the

source CFG are captured by corresponding loop iterations in the target

CFG. That is, given a source loop execution from a fixed state 𝜎, there is

a target loop execution that captures the source execution. This target

execution reaches potentially different states after each loop iteration

(namely those states reached by the source execution). The premises in

the loop head’s global block theorem do not directly imply that there are

no failing loop executions in the target beginning from these different

states. As a result, we must add the absence of failing target executions as

a premise in the induction hypothesis here. On the other hand, in the case

of cycle elimination, all target executions justifying the corresponding

loop iterations start from the same state related to 𝜎, which is why the

absence of failing target executions can be justified via the premises in

the loop head’s global block theorem.

Global coalesced block theorem

To introduce the global coalesced block theorem, we first introduce some

necessary terminology. For a source block 𝐵𝑆 that is coalesced into a target

block 𝐵𝑇 , we call the suffix commands of 𝐵𝑇 w.r.t. 𝐵𝑆 the suffix of commands

of 𝐵𝑇 that captures the intermediate point in 𝐵𝑇 reflecting the beginning

of 𝐵𝑆 (in particular, the commands of 𝐵𝑆 must be a prefix of this suffix).

For instance, in Figure 2.24 the suffix commands of 𝐵′
0

w.r.t. 𝐵2 are given

by the singleton list [j := j+1] and the suffix commands of 𝐵′
0

w.r.t. 𝐵1

are given by the list [assume j > 0, assume i > 0, j := j+1].

The global coalesced block theorem is given by:

Theorem 2.7.2 (CFG optimisations global coalesced block theorem)

Let 𝑄post, Λ, 𝐺𝑆, 𝐺𝑇 , 𝐵𝑆 and LH(·) and Trg(·) be as in the global standard
block theorem (Theorem 2.7.1). Let the source block 𝐵𝑆 be coalesced into a
target block 𝐵𝑇 , and let cs𝑇 be the suffix commands in 𝐵𝑇 w.r.t. 𝐵𝑆.

Then, for any type interpretation T, any function interpretation F, any state
𝜎, any CFG configuration (𝑚′

1
, 𝑠′

1
), and any number of execution steps 𝑖 the

following must hold: if

1. (T,Λ,F), 𝐺𝑆 ⊢ (inl(𝐵𝑆),N(𝜎)) →𝑖
CFG (𝑚′

1
, 𝑠′

1
)

2. succsCorrectAfterCmds(T,Λ,F, 𝐺𝑇 , 𝐵𝑇 , cs𝑇 , 𝜎, 𝑄post)
3. ∀𝐵𝐻 ∈ LH(𝐵𝑆).

loopIHOpt(T,Λ,F,Ω, (𝐺𝑆 , 𝐺𝑇), (𝐵𝐻 , Trg(𝐵𝐻)), 𝑖 , 𝑄post , (𝑚′
1
, 𝑠′

1
))

then validConfig(T,Λ,F, 𝑄post , (𝑚′
1
, 𝑠′

1
)) holds.

78 2. Formally Validating a Verification Condition Generator

succsCorrectAfterCmds(T,Λ,F, 𝐺𝑇 , 𝐵𝑇 , cs𝑇 , 𝜎, 𝑄post) ≜
∀𝑠′. (T,Λ,F) ⊢ ⟨cs𝑇 ,N(𝜎)⟩ [→] 𝑠′ ⇒
𝑠′ ≠ F ∧

(
successors(𝐺𝑇 , 𝐵𝑇) = ∅ ⇒ validConfig(T,Λ,F, 𝑄post , (inr(), 𝑠′))

)
∧

∀𝜎1. 𝑠
′ = N(𝜎1) ⇒ ∀𝐵succ ∈ successors(𝐺𝑇 , 𝐵𝑇) ⇒

∀𝑚′
2
, 𝑠′

2
. (T,Λ,F), 𝐺𝑇 ⊢ (inl(𝐵succ),N(𝜎1)) →∗

CFG (𝑚′
2
, 𝑠′

2
) =⇒ validConfig(T,Λ,F, 𝑄post , (𝑚′

2
, 𝑠′

2
))

Figure 2.25: Definition of succsCorrectAfterCmds. Note that if block 𝐵𝑇 has no successors, then the postcondition

must hold after the execution of commands cs𝑇 (except if a magic state is reached); this explains the extra

conjunct with the hypothesis successors(𝐺𝑇 , 𝐵𝑇) = ∅.

Here, the second premise expresses via succsCorrectAfterCmds that there

are no failing executions that start by executing the suffix commands

cs𝑇 followed by any execution in the target CFG starting from one

of the successors of the target block 𝐵𝑇 . (The formal definition for

succsCorrectAfterCmds is shown in Figure 2.25.) This captures for a

coalesced source block precisely the matching executions that execute

the same commands in the target CFG. This second premise is also the

only difference to the global standard block theorem (Theorem 2.7.1).

2.7.3. Generating Proofs for Global Block Theorems

As previously mentioned, we automatically generate proofs for the global

block theorems introduced in Subsection 2.7.2 in reverse-topological

order of the target CFG where the back edges have been eliminated.

Since Boogie already computes the target CFG’s back edges for cycle

elimination, we reuse these results to compute the reverse-topological

order. Moreover, we also reuse the back edge results to compute the set of

loops in which a source block is contained, which we require to express

the global block theorems. This is possible since block coalescing does

not fundamentally change the loops. There are some corner cases one

must take into account. For example, a loop head in the source CFG may

be coalesced together with the entire loop body into a single block. In

this case, in the target CFG, the loop is a single block with an edge to

itself, while in the source CFG the loop head and the origin of the back

edge are different blocks.

To validate the coalescing of blocks, we instrument the Boogie verifier to

produce information indicating which source blocks are coalesced into

which target block. This avoids having to redo the coalescing computation.

Using this information, we generate the global block theorems for a

sequence of blocks (𝐵0 , 𝐵1 , ..., 𝐵𝑛) coalesced into a single target block

as follows. For the final block 𝐵𝑛 in the sequence, we prove the global

coalesced block theorem using the global standard block theorems for

𝐵𝑛 ’s successors. Then, we iteratively prove the global coalesced block

theorems for 𝐵𝑖 using the global coalesced block theorem for its unique

successor 𝐵𝑖+1. Finally, we convert the global coalesced block theorem for

𝐵0 to the corresponding global standard block theorem that relates 𝐵0

with the target block 𝐵′
0

into which the block sequence was coalesced. To

complete the proof in this last step, we must check that the commands of

the target block 𝐵′
0

are given by the commands in the sequence of source

blocks (𝐵0 , 𝐵1 , ..., 𝐵𝑛).

2.8. A Formal Semantics For Boogie Abstract Syntax Trees 79

𝐵0

assume j > 0
j := i+j

𝐵1

j := i
assume false

𝐵2

j := j+1 𝐵3

assert j == i 𝐵5
assert j > i 𝐵4

𝐵0

assume j > 0
j := i+j

𝐵1

j := i
assume false

𝐵2

assert j > i 𝐵4

Figure 2.26: Example showing the pruning of unreachable blocks applied to the source CFG on the left,

which results in the target CFG on the right.

2.7.4. Unreachable Block Pruning

To prune a subset of blocks unreachable from the entry block in a

CFG, Boogie identifies every block that syntactically contains at least

one assume false or assert false command. Let us call such blocks

abnormal blocks, since every execution of such a block either ends in a

magic state (if assume false is executed) or in failure (if assert false

is executed). In the unreachable block pruning transformation, Boogie

removes all outgoing edges from abnormal blocks and prunes every

block that is reachable from the entry block only via paths that contain

at least one abnormal block. This transformation is sound because no

execution ever continues beyond an abnormal block. One advantage

of block pruning is that the considered CFG becomes smaller. Another

advantage is that it enables more blocks being coalesced in the subsequent

block coalescing transformation.

Figure 2.26 shows a concrete example of the transformation. Here, blocks

𝐵3 and 𝐵5 are pruned, since every path reaching them must go through

the abnormal block 𝐵2. The edge from 𝐵2 to 𝐵4 is pruned, too. In this

example, the pruning of blocks leads to 𝐵1 and 𝐵4 being coalesced later.

It is straightforward to extend the validation discussed for block co-

alescing to include the pruning of unreachable blocks. For abnormal

blocks that are not pruned, we directly prove the global block theorem

(the standard or coalesced version depending on whether the block is

coalesced) without needing to take successors into account; we just need

to show that no execution will continue beyond the abnormal block. We

do not need to prove global block theorems for pruned blocks for the

following reason: If the transformation was performed correctly, then we

are able to prove the global block theorem of the entry block without

considering any of the pruned blocks. This implicitly shows that no

execution from the entry block ever reaches pruned blocks.

2.8. A Formal Semantics For Boogie Abstract

Syntax Trees

So far, we have discussed the formal validation of Boogie transformations

that operate solely on the CFG representation of Boogie programs. How-

ever, the original representation into which a Boogie program is parsed

is an AST, which is then converted into a CFG in the first transformation

80 2. Formally Validating a Verification Condition Generator

BGuard ∋ 𝑔 ::= 𝑒 | ∗
BControlFlow ∋ ctrl ::= if (𝑔) { 𝑠 } else { 𝑠 } | while (𝑔) invariant 𝑒 { 𝑠 } | return | 𝜖
BStmtBlock ∋ 𝑏 ::=

−→𝑐 ; ctrl

BStmt ∋ 𝑠 ::=
−→
𝑏

Figure 2.27: The Boogie AST statement syntax of our formalised Boogie subset. The symbols 𝑒 and 𝑐 denote

Boogie expressions and basic commands, respectively, as defined in Figure 2.3 on page 25. The symbol 𝜖
denotes an empty control-flow element.

of Boogie’s pipeline (as discussed in Section 2.2). Moreover, Boogie front-

end verifiers that translate a source language into Boogie usually directly

interact with an AST representation of Boogie. As a result, the formal

validation of both of these translations (Boogie’s AST-to-CFG transfor-

mation and translations from source languages into Boogie) requires a

formal semantics for Boogie’s AST representation. In this section, we

present such a formal semantics.

2.8.1. The Boogie AST

The bodies of Boogie procedures are the only construct in a Boogie

program where there is a difference between an AST and a CFG repre-

sentation. The top-level commands, as defined in Figure 2.3 on page 25,

remain the same. An AST procedure body is given by a statement whose

syntax is shown in Figure 2.27. A statement is given by a list of statement
blocks. Each statement block

−→𝑐 ; ctrl consists of a list of basic commands

−→𝑐 followed by a control-flow element ctrl that is an if-construct, a while-

construct, a return-construct (to exit a procedure prematurely), or is

empty (𝜖). The bodies of if- and while-constructs are again statements,

and while-constructs are given an invariant as a Boogie expression.
35

35: Boogie supports the declaration of

multiple invariants for a single loop,

whose conjunction represents the actual

invariant. We also support multiple in-

variant declarations in our Isabelle for-

malisation.

We make sure that in our Isabelle embedding of a Boogie program,

these bodies are always non-empty, which avoids the need for special

cases when defining its semantics. An empty body in the source code

is represented via the singleton list with an empty statement block (i. e.
[[]; 𝜖]).

The conditions for if- and while-constructs are given by guards that are

either Boolean expressions or wildcard symbols (*). Wildcard symbols

express demonic nondeterminism. For instance, an if-construct with

the wildcard symbol expresses that an execution nondeterministically

chooses which branch to check. Correctness of a Boogie program holds

only if neither branch leads to failure.

The AST syntax in Figure 2.27 reflects the representation used by the

Boogie verifier in its implementation. This representation is somewhat

non-standard, since it distinguishes between two different sequential

compositions: sequential composition of statement blocks and sequential

composition of a list of basic commands followed by a control-flow

element. As we will see in Chapter 3, this leads to a mismatch between

the structure of the Boogie AST and the more standard Viper AST, which

uses only one kind of sequential composition. In Chapter 3, we bridge

this mismatch.

2.8. A Formal Semantics For Boogie Abstract Syntax Trees 81

We do not formalise all AST constructs that the Boogie verifier supports.

For instance, we currently do not formalise breaks out of loops, gotos,

and else-if-branches in if-constructs. Else-if branches can be encoded into

our formalised subset via nested if-constructs. We also do not formalise

Boogie’s free loop invariants as part of while loops (loop invariants that

are assumed to hold without being checked). When unformalised AST

constructs are used, then the AST-to-CFG transformation is not validated.

However, as we will make clear in Section 2.9, in such cases, our formal

validation for the CFG transformations still works if the resulting CFG

falls into our formalised CFG subset. For the mentioned unformalised

AST constructs, this is indeed the case, since we support CFGs generated

from source programs with breaks, gotos, else-if-branches, and free loop

invariants.

2.8.2. Operational Semantics

We define a small-step operational semantics for the Boogie AST. The

judgement Γ ⊢ ⟨𝛾, 𝑠⟩ →AST ⟨𝛾′, 𝑠′⟩ expresses a single execution step

from program point 𝛾 and outcome 𝑠 to program point 𝛾′
and outcome

𝑠′ in the Boogie context Γ. A program point is given by a pair of the

currently active statement block 𝑏 and the continuation representing the

statement blocks to be executed after 𝑏. A continuation is either the empty

continuation KStop (i. e. nothing to execute) or a sequential continuation

KSeq(𝑏,K) (i. e. a statement block 𝑏 followed by a continuation K). A

continuation-based small-step semantics avoids the need for local search

rules commonly required in a small-step semantics [80].
36

[80]: Appel et al. (2007), Separation Logic
for Small-Step cminor
36: Such a continuation-based small-

step semantics has also been used with

breaks and gotos, which Boogie also has,

but which we do not yet support. An ex-

ample is a semantics used in the Comp-

Cert formalisation [81].

The small-step judgement is defined inductively via the rules shown

in Figure 2.28. The rules are mostly standard. The semantics for the

loop executes each loop iteration separately, where the corresponding

invariant is checked before every loop iteration. If an invariant check fails,

failure is reached.

As can be seen in the premise of the first rule shown in Figure 2.28, the

list of basic commands at the beginning of a statement block execute fully

in a single step (this is because of the judgement Γ ⊢ ⟨cs,N(𝜎)⟩ [→] 𝑠′
defined in Figure 2.7 on page 31). This is consistent with how the CFG

semantics is defined in Subsection 2.3.3, where the list of basic commands

for a basic block executes in a single step. However, in Chapter 3, when

reasoning about the Viper-to-Boogie translation, it is more useful to use

an AST semantics where each basic command in the list of a statement

block executes in a separate step. Such an alternative semantics allows

expressing more fine-grained reductions, which is useful, for instance,

when a Viper statement corresponds only to a prefix of the list of basic

commands. As a result, we define an auxiliary semantics that does

precisely this via the judgement Γ ⊢ ⟨𝛾, 𝑠⟩ →AST2 ⟨𝛾′, 𝑠′⟩, which is the

same as Γ ⊢ ⟨𝛾, 𝑠⟩ →AST ⟨𝛾′, 𝑠′⟩ except that each basic command in a list

executes in a separate step. We define this auxiliary semantics in terms

of the original one via the two separate rules shown in Figure 2.29. This

auxiliary semantics does not show up in our final certificates (and thus

need not be trusted), since in the end everything is connected via the

original AST semantics.

82 2. Formally Validating a Verification Condition Generator

Γ ⊢ ⟨cs,N(𝜎)⟩ [→] 𝑠′
cs ≠ []

Γ ⊢ ⟨(cs; ctrl,K),N(𝜎)⟩ →AST ⟨([]; ctrl,K), 𝑠′⟩

Γ ⊢ ⟨([]; 𝜖,KSeq(𝑏,K)),N(𝜎)⟩ →AST ⟨(𝑏,K),N(𝜎)⟩

𝑠 = M ∨ 𝑠 = F
¬(𝑐𝑠 = [] ∧ ctrl = 𝜖 ∧K= KStop)

Γ ⊢ ⟨(cs; ctrl,K), 𝑠⟩ →AST ⟨([]; 𝜖,KStop), 𝑠⟩

Γ ⊢ ⟨([]; return,K),N(𝜎)⟩ →AST ⟨([]; 𝜖,KStop),N(𝜎)⟩

𝑔 ≠ ∗ ⇒ Γ, ∅ ⊢ ⟨𝑔,N(𝜎)⟩ ⇓ BoolVal(true)
Γ ⊢ ⟨([]; if (𝑔) { 𝑏 :: bs } else { bs′ },K),N(𝜎)⟩ →AST ⟨(𝑏, blocksToCont(bs,K)),N(𝜎)⟩

𝑔 ≠ ∗ ⇒ Γ, ∅ ⊢ ⟨𝑔,N(𝜎)⟩ ⇓ BoolVal(false)
Γ ⊢ ⟨([]; if (𝑔) { bs′ } else { 𝑏 :: bs },K),N(𝜎)⟩ →AST ⟨(𝑏, blocksToCont(bs,K)),N(𝜎)⟩

𝑏while = []; while (𝑔) invariant 𝑒 { 𝑏 :: bs }
𝑔 ≠ ∗ ⇒ Γ, ∅ ⊢ ⟨𝑔,N(𝜎)⟩ ⇓ BoolVal(true)

Γ, ∅ ⊢ ⟨𝑒 ,N(𝜎)⟩ ⇓ BoolVal(true)
Γ ⊢ ⟨(𝑏while ,K),N(𝜎)⟩ →AST ⟨(𝑏, blocksToCont(bs@𝑏while ,K)),N(𝜎)⟩

𝑏while = []; while (𝑔) invariant 𝑒 { bs }
𝑔 ≠ ∗ ⇒ Γ, ∅ ⊢ ⟨𝑔,N(𝜎)⟩ ⇓ BoolVal(false)

Γ, ∅ ⊢ ⟨𝑒 ,N(𝜎)⟩ ⇓ BoolVal(true)
Γ ⊢ ⟨(𝑏while ,K),N(𝜎)⟩ →AST ⟨([]; 𝜖,K),N(𝜎)⟩

𝑏while = []; while (𝑔) invariant 𝑒 { bs }
Γ, ∅ ⊢ ⟨𝑒 ,N(𝜎)⟩ ⇓ BoolVal(false)

Γ ⊢ ⟨(𝑏while ,K),N(𝜎)⟩ →AST ⟨([]; 𝜖,KStop), F⟩

Figure 2.28: Operational semantics for the Boogie AST. The evaluation of expressions (e.g. Γ, ∅ ⊢ ⟨𝑔,N(𝜎)⟩ ⇓
BoolVal(true)) is defined in Figure 2.5 on page 30 and the reduction of a list of basic commands (e.g.
Γ ⊢ ⟨cs,N(𝜎)⟩ [→] 𝑠′) is defined in Figure 2.7 on page 31 (we introduced both of these as part of the semantics

of Boogie CFGs). The term [] denotes the empty list, and the term 𝑏 :: bs denotes the list whose head and tail

are given by 𝑏 and bs, respectively. The term bs1@bs2 denotes the list obtained by appending lists bs1 and bs2.

The term blocksToCont(bs,K) denotes the continuation in which first the statement blocks bs are executed

followed by the continuation K (blocksToCont(·, ·) is defined by recursively applying KSeq(·, ·)).

2.8. A Formal Semantics For Boogie Abstract Syntax Trees 83

Γ ⊢ ⟨𝑐, 𝑠⟩ → 𝑠′

Γ ⊢ ⟨(𝑐 :: cs; ctrl,K), 𝑠⟩ →AST2 ⟨(cs; ctrl,K), 𝑠′⟩

Γ ⊢ ⟨([]; ctrl,K), 𝑠⟩ →AST ⟨𝛾′, 𝑠′⟩
Γ ⊢ ⟨([]; ctrl,K), 𝑠⟩ →AST2 ⟨𝛾′, 𝑠′⟩

Figure 2.29: Alternative AST semantics that reduces each basic command in a separate step. The semantics

defaults to the original AST semantics in the case when the list of basic commands in the active statement

block is empty (i. e. when the next step will not execute a basic command).

To express an execution that takes 0 or more steps, we use the reflexive-

transitive closure of the single step judgement. Γ ⊢ (𝛾, 𝑠) →∗
AST (𝛾, 𝑠′)

denotes the reflexive-transitive closure w.r.t. the original single step

judgement defined in Figure 2.28 and Γ ⊢ (𝛾, 𝑠) →∗
AST2 (𝛾, 𝑠′) denotes

the reflexive-transitive closure w.r.t. the alternative single step judgement

defined in Figure 2.29.

2.8.3. AST Procedure Correctness

In Subsection 2.3.4, we provided a formal definition for procedure

correctness that takes the correctness of a procedure body as a parameter

(see Definition 2.3.1 on page 32). To define procedure correctness in the

case when a procedure body is represented as an AST, we instantiate

this parameter in that definition (i. e. in Definition 2.3.1) via the following

definition that states when a procedure body represented by an AST is

correct:

Definition 2.8.1 (Correctness of an AST body)

bodyCorrectAST(Γ, body, post, 𝜎) ≜
∀𝑏′,K′, 𝑠′. Γ ⊢ (initProgPoint(body),N(𝜎)) →∗

AST ((𝑏′,K′), 𝑠′) ⇒
𝑠′ ≠ F ∧(

(𝑏′,K′) = ([]; 𝜖,KStop) ⇒
∀𝜎′. 𝑠′ = N(𝜎′) ⇒ Γ, ∅ ⊢ ⟨post,N(𝜎′)⟩ ⇓ BoolVal(true)

)
Here, body is a Boogie statement (i.e. a list of statement blocks) and
initProgPoint(body) provides the initial program point in body (i. e. a simple
conversion from a list of statement blocks to a tuple where the first element is the
first statement block and the second element is the continuation representing
the tail of the statement block list).

This definition is analogous to the instantiation used for the CFG (Def-

inition 2.3.2). The program point ([]; 𝜖,KStop) expresses that there is

nothing left to execute, and thus the postcondition must be taken into

account whenever this program point is reached.

84 2. Formally Validating a Verification Condition Generator

2.9. AST-to-CFG Transformation

In this section, we briefly give an overview of our validation of Boogie’s

AST-to-CFG transformation that converts the AST representation of the

input Boogie program (as computed by the Boogie parser) into the CFG

representation. Details of the validation are presented in Aleksandar

Hubanov’s BSc thesis [61], which was supervised by the author of this[61]: Hubanov (2022), Formally Validating
the AST-to-CFG Phase of the Boogie Program
Verifier

dissertation.

As already discussed when showing the AST representation in Section 2.8,

we support only a subset of possible AST constructs. In particular, in

terms of control flow, we support while-loops but we do not support

goto- and break-constructs in the AST. However, the validation of the

remaining transformations that operate on the CFG still works if the CFG

was obtained from goto- and break-constructs. In such a case where we

do not support constructs in the AST but support all constructs in the

resulting CFG, we generate certificates for the remaining transformations

and combine them to get a partial result for Boogie’s pipeline: we show

that the validity of the VC implies the correctness of the CFG obtained

from the AST-to-CFG transformation. In the case when we do support all

constructs in the AST, we are able to validate the entire Boogie pipeline by

additionally generating a certificate for the AST-to-CFG transformation.

The validation of the AST-to-CFG transformation works as usual via our

global block theorem and local block lemma approach. For the AST-to-

CFG transformation, the global block theorem relates any finite execution

starting from a program point in the AST with executions starting from

the corresponding basic block in the CFG. The corresponding local block

lemma relates executions of the basic commands at the beginning of

the program point’s statement block in the AST with executions of the

corresponding basic block itself.

Since we do not support gotos or breaks, we are able to prove the global

block theorems by going backwards through the AST. We prove global

block theorems for statement blocks with while loops by induction.

The global block theorems within the loop have the corresponding

induction hypothesis as a premise, analogously to how we deal with

cycles in the validation of cycle elimination (Section 2.4) and the CFG

optimisations (Section 2.7). One difference to these transformations is that

in the AST-to-CFG transformation, we need to track only the induction

hypothesis for the most inner loop that is active, instead of tracking the

induction hypotheses for all active loops. This simplification is possible

because we currently do not support gotos and breaks. As a result,

executions exit loops only at the loop condition and thus one need not

take other induction hypotheses into account even if the corresponding

loop is nested within other loops. In contrast, the validation of the

CFG transformations can, for instance, handle jumps out of loops from

any point within the loop. To handle gotos and breaks in the AST-to-

CFG validation, we would have to also support such jumps and thus

would have to also track multiple induction hypotheses in global block

theorems.

This concludes our discussion of the validation of Boogie’s transforma-

tions. In the following sections, we will evaluate our certificate-producing

2.10. Implementation and Evaluation 85

implementation of Boogie, discuss related work, and finally conclude

with future directions.

2.10. Implementation and Evaluation

In this section, we evaluate our certifying version of the Boogie verifier,

which automatically produces Isabelle certificates that formally justify

the soundness of Boogie’s pipeline.

2.10.1. Implementation

We have implemented our validation tool as a new C# project called

“ProofGeneration” as part of the existing Boogie codebase that is given

by a C# solution.
37

We instrumented Boogie’s existing codebase to call 37: A C# solution contains multiple C#

projects and manages their dependen-

cies.

out to our C# project, which allows us to obtain information that we

use to validate the transformations, and extended parts of the existing

codebase to extract information more easily. Moreover, we disabled

counterexample related VC features and the generation of VC axioms for

any built-in types and operators that we do not support. Our validation

tool currently supports the default options of Boogie (only), and one of

the three possible type encodings (as discussed in Section 2.6). Our tool

does not support source-level attributes (for instance, to selectively force

procedures to be inlined).

Given an input file verified by Boogie, our work produces an Isabelle

certificate per procedure showing that the procedure’s correctness follows

from the validity of the VC. As discussed in the previous sections, we cover

the entire Boogie pipeline only for a subset of Boogie programs. More

concretely, if the procedure is within our supported subset (see Figure 2.3

on page 25), has only features supported by our AST-to-CFG validation

(e.g. no gotos or breaks), and has no dead variables, then our certificate

covers the full Boogie pipeline. That is, in this case, the certificate shows

that the correctness of the Boogie program as represented internally

by Boogie’s AST follows from the validity of the generated VC. If the

procedure is within our subset but has features not supported by our

AST-to-CFG validation, or has dead variables, then our certificate covers

the entire pipeline excluding the AST-to-CFG transformation and dead

variable elimination. That is, in this case, the certificate shows that the

correctness of the Boogie program as represented internally by Boogie’s

CFG (after the elimination of dead variables) follows from the validity of

the generated VC.

The generation and checking of the certificate is fully automatic, without

any user input. We use a combination of custom and built-in Isabelle

tactics.

2.10.2. Experimental Evaluation

We evaluated our work on two sets of benchmarks. Firstly, to evaluate the

applicability of our certificate generation, we automatically collected all

input files from Boogie’s test suite [84], which satisfy the following con- [84]: Boogie Developers (n.d.), Boogie Ver-
ifier Test Suite Used For Evaluation

86 2. Formally Validating a Verification Condition Generator

Table 2.1: Selection of algorithmic examples with the lines of Boogie code (LOC), the number of Boogie

procedures (#P), the time it takes for Isabelle to check the certficate in seconds (the mean of 6 runs), and the

certificate size expressed as the number of non-empty lines of Isabelle. For the procedure in TuringFactorial

and one of the procedures in Find the AST-to-CFG certificate was not generated since these procedures

contain gotos.

Name LOC #P Time [s] Size

TuringFactorial 29 1 18.1 2361

Find 27 2 24.8 2587

DivMod 36 2 19.7 2520

Summax [82] 23 1 20.3 2547

MaxOfArray [83] 21 1 25.0 2524

SumOfArray [83] 22 1 19.9 1920

Plateau [83] 46 1 20.8 2558

WelfareCrook [83] 50 1 35.9 3241

ArrayPartitioning [83] 56 2 32.7 4304

DutchFlag [83] 75 2 33.6 4910

straints: (1) the file is successfully verified by Boogie, (2) the file has at least

one procedure, and (3) the file contains only features that are supported

by our certificate generation or features that can be easily desugared

into our supported subset; this includes examples using procedure calls.

We did this desugaring manually in all cases except for procedure calls,

where we could use Boogie’s call desugaring implementation to do so

automatically in most cases.
38

For programs employing attributes, we38: We had to manually desugar calls

within loops for a technical reason regard-

ing Boogie’s implementation.

checked whether the program still verifies without attributes, and if so

we also kept these. In total, this yielded 100 programs from Boogie’s test

suite. Secondly, we collected a corpus of ten Boogie programs which

verify interesting algorithms with nontrivial specifications: three from

Boogie’s test suite and seven from the literature [82, 83]. Where needed,[82]: Klebanov et al. (2011), The 1st Verified
Software Competition: Experience Report
[83]: Chen et al. (2017), Triggerless Happy –
Intermediate Verification with a First-Order
Prover

we manually desugared usages of Boogie maps (which we do not yet

support) using type declarations, functions, and axioms.

We ran our certificate-producing Boogie version on both sets of bench-

marks to generate the corresponding Isabelle certificates. We then checked

whether Isabelle (automatically) accepted each generated certificate. For

the second set of ten Boogie programs we additionally measured the time

it took for Isabelle to (automatically) accept each of the generated certifi-

cates. All experiments were run on a Lenovo T480 Ubuntu 18.04 on the

Windows Subsystem for Linux with 32 GB RAM and i7-8550U 1.8 GhZ

CPU (scaled up to 4 GhZ using TurboBoost). For the time measurements,

we took the mean of five repetitions.

The 100 programs from Boogie’s test suite contain 175 procedures.
39

39: We do not count procedures with-

out procedure bodies. Such abstract pro-
cedures are trivially correct.

For 153 procedures, our tool generates certificates for the entire Boogie

pipeline. The remaining 22 procedures contain features that our tool

does not yet handle in the validation of the AST-to-CFG transformation

or contains dead variables. As a result, for these 22 procedures, our tool

generates a certificate for the CFG representation after the dead variable

elimination. Isabelle successfully checks the generated certificates for

96 of the 100 programs. The remaining 4 certificates involve special

cases that we do not handle yet. For 2 of them, extending our work is

straightforward: one special case includes a naming clash and the other

case can be amended by using a more specific version of a helper lemma

(i. e. by instantiating one of the universally quantified parameters in the

lemma concretely). The remaining two fail because of our incomplete

2.10. Implementation and Evaluation 87

handling of function calls in the final generation of the VC; we have

discussed the corresponding incompleteness in Subsection 2.6.4. In

particular, in both cases, the main challenge is that values from certain

function calls in the VC are converted from the carrier sort 𝑉 (used in

the VC to represent all Boogie values) to the corresponding primitive

value at the VC level. Handling this is more challenging than the other

two cases but is not a fundamental issue (see Subsection 2.6.4).

The corpus of 10 programs contains 14 procedures. For 12 procedures, our

tool generates certificates for the entire Boogie pipeline. The remaining

2 procedures contain features that our tool does not yet handle in the

validation of the AST-to-CFG transformation, because these procedures

contain gotos. As a result, for these 2 procedures, our tool generates a

certificate for the CFG representation after the dead variable elimination.

Isabelle successfully checks all the certificates generated for all 14 proce-

dures in the 10 programs. Table 2.1 shows the generated certificate size

and the time it took for Isabelle to check their validity (the mean of five

repetitions).
40

The time to generate the certificate is not included, but is 40: Note that in the conference publica-

tion [59], we used a version of DivMod

where we manually desugared if-then-

else expressions into if-statements. Here,

we use the original version, since we later

added support for if-then-else expres-

sions. Also note that the certificates in

the conference publication do not cover

the AST-to-CFG and the CFG optimisa-

tions, which is why the certificate sizes

are larger here. Moreover, we made some

general changes, which affected the cer-

tificate details after the publication.

negligible here. The certificate sizes are not small (ranging from 1920 to

4910 non-empty lines of Isabelle code) and the validation times (ranging

from 18 to 36 seconds) are not short given the size of the programs.

However, the times are acceptable since certificate generation needs to

run only for the (verified) release version of the program in question

or as part of continuous integration. A possible workflow could be the

following. In a first step users identify suitable specifications and loop

invariants for the to-be-verified program, which may also involve changes

to the program itself, since the program may be incorrect. During this

first step, there is no need for certificate generation, since verification

either fails or the specifications and program are not yet as the user

desires. In a second step, once the specification and loop invariants are

finalised, and Boogie verifies the program, users can run the automatic

certificate generation and can then use Isabelle to check the certificates.

Our evaluation demonstrates that our automatic certificate generation

works on a diverse set of Boogie examples, and that Isabelle can success-

fully check the automatically generated certificates in acceptable times.

Our evaluation does not consider Boogie programs generated by Boogie

front-ends (such as Dafny and Viper), which is the main way the Boogie

language is used. These front-ends currently target Boogie programs with

features that go beyond our subset. Moreover, these generated programs

are also significantly larger than most hand-written programs. However,

we have clear ideas for how to extend our work to make automatic

certificate generation applicable for such examples. In terms of larger

subsets, most remaining features are straightforward to add, with some

exceptions for which we have initial ideas. In terms of making the certifi-

cate generation scale to large programs, we are aware of one bottleneck

for which we will discuss a concrete solution in Subsection 2.12.1 that

should eliminate this bottleneck. Finally, for the incompletenesses in

the certificate generation, which we have noticed in our evaluation, we

have clear solutions. We will discuss directions for adding support for

front-end-generated Boogie programs in Subsection 2.12.1.

88 2. Formally Validating a Verification Condition Generator

2.10.3. Trusted Components

Our certificate-producing version of Boogie greatly reduces the parts of

the Boogie verifier implementation that must be trusted. In particular,

if Isabelle successfully checks the generated certificate, then Boogie’s

transformations from the AST representation (or CFG representation if

the program has breaks or gotos) to the VC need not be trusted.

However, there are still various parts that must be trusted in order

to conclude that a certificate successfully checked by Isabelle actually

implies that the VC produced by Boogie implies the correctness of the

input Boogie program, which include:

▶ the soundness of the Boogie parser that translates a source program

represented in text into Boogie’s internal AST representation

▶ our deep embedding of the Boogie AST representation in Isabelle

must reflect the input program; this includes our formal Boogie

semantics

▶ our shallow embedding of the VC in Isabelle must reflect the

verification condition that Boogie sends to the SMT solver

▶ the soundness of Isabelle

There is existing work that provides a formal technique to increase the

trustworthiness of parsers [85]. The semantics of the embedded Boogie[85]: Jourdan et al. (2012), Validating LR(1)
Parsers

program is a fundamental trust assumption, which we cannot fully

eliminate, since soundness is defined w.r.t. this semantics. However, we

could increase the confidence that our formalised semantics matches the

intended semantics by proving the correctness or incorrectness of concrete

example Boogie programs in Isabelle w.r.t. the formalised semantics. We

could obtain the intended result (i. e. correctness or incorrectness) from

the Boogie test suite, which makes explicit which programs in the test

suite are supposed to be correct and which programs are supposed

to be incorrect. Similarly our shallow embedding of the VC is also a

fundamental trust assumption, for which we could similarly increase our

confidence that this embedding indeed reflects the intended semantics.

Finally, Isabelle and other interactive theorem provers (ITPs) have an

isolated kernel that must be trusted. Since Isabelle is a mature tool

developed with the purpose of establishing trustworthy guarantees,

which has many users, its kernel (and thus Isabelle itself) is considered

by the research community to be extremely trustworthy. Nevertheless,

there is existing work that shows how to formally prove the soundness

of an ITP [86].[86]: Abrahamsson et al. (2022), Candle:
A Verified Implementation of HOL Light

The soundness of the parser is not relevant for Boogie front-ends if one

directly shows that the correctness of the front-end program is implied

by the correctness of the corresponding Boogie encoding as represented

internally by Boogie’s AST (as we will do in Chapter 3 for Viper). In

some cases, the parser is not even used by a front-end, since front-ends

may directly construct Boogie programs using Boogie’s internal AST

representation; for example, Dafny does so by using Boogie as a C#

library.

Finally, to conclude that the Boogie program is correct for a successful

verification result (without assuming the validity of the VC), one must

additionally trust that the VC generated by Boogie is indeed valid. To

avoid trusting this component, one could build on existing work that

2.11. Related Work 89

makes SMT solvers certificate-producing [8–10] to automatically prove in [8]: Böhme et al. (2010), Fast LCF-Style
Proof Reconstruction for Z3
[9]: Ekici et al. (2017), SMTCoq: A Plug-In
for Integrating SMT Solvers into Coq
[10]: Fleury et al. (2019), Reconstructing
veriT Proofs in Isabelle/HOL

Isabelle that the generated VC is valid.

Boogie’s type checker

We need not trust Boogie’s type checker, because our certificates

do not explicitly assume that the input program is well-typed. In

particular, the trust assumption on our deep embedding of Boogie’s

AST representation in Isabelle and on our Boogie semantics captures

whether our deep embedding accurately models the input program.

However, our semantics accurately models only Boogie programs that

are well-typed. For instance, an assignment 𝑥 := 𝑒 reduces only if 𝑒

evaluates to a value whose type matches the type declared for variable

𝑥. So, to weaken our trust assumption on our Boogie semantics, we

could increase the trustworthiness of our Boogie semantics by: (1)

proving a type soundness result for our operational semantics, which

states that if the input program is well-typed, then executions cannot

get stuck, and (2) proving that the input program is well-typed. For (2),

we could either trust Boogie’s type checker or automatically generate

a certificate that proves well-typedness of a program.

Combining certificates for front-end translations with our generated

certificates

If one establishes a certificate showing the soundness of a front-end

translation into Boogie and then combines this certificate with the

certificate generated by our instrumented Boogie version, then one

need not trust the Isabelle embedding of the Boogie AST represen-

tation and the Boogie semantics. The reason is that in this case the

combined certificate establishes that the validity of the VC generated

by Boogie implies the correctness of the front-end program. Since

the validity of the VC and the correctness of the front-end program

are independent from the corresponding Boogie program, one need

not trust the Boogie semantics. In this case, the Boogie program just

serves as an intermediate point that connects two different certificates.

2.11. Related Work

Several works explore the validation of SMT-based program verifiers for

a subset of the language supported by the verifier. Garchery [35] validates [35]: Garchery (2021), A Framework for
Proof-carrying Logical Transformations

VC rewritings in the existing Why3 implementation [17]. Unlike our work,

[17]: Filliâtre et al. (2013), Why3 — Where
Programs Meet Provers

they do not connect VCs with programs and do not handle the erasure of

polymorphic types. Strub et al. [56] develop a self-certification approach

[56]: Strub et al. (2012), Self-certification:
bootstrapping certified typecheckers in F*
with Coq

and apply it to the dependently-typed F* language. They generate a

Coq certificate for a core F* type checker written in F*. Like us, they do

not certify the validity of conditions encoded into an SMT query, but

they do not consider program-to-program transformations such as the

ones that we validate. Aguirre [87] shows how one can map proofs for [87]: Aguirre (2016), Towards a Provably
Correct Encoding from F* to SMT

F*’s logical encoding (which is given to an SMT solver) back to a proof

of the corresponding F* program. They prove a once-and-for-all result,

but since their once-and-for-all proof is constructive, their approach

could be ported to a per-run validation approach using the certificate-

90 2. Formally Validating a Verification Condition Generator

producing capability of SMT solvers [88]. Porting the approach would[88]: Barrett et al. (2015), Proofs in Satisfi-
ability Modulo Theories

require extending their approach to handle classical proofs (as produced

by certificate-producing SMT solvers) instead of constructive proofs of

logical formulas. There are also existing works that validate existing

program verifier implementations based on symbolic execution, which

require a fundamentally different validation approach, since symbolic

execution works very differently compared to Boogie’s VC generation.

Lin et al. [48]

[48]: Lin et al. (2023), Generating Proof Cer-
tificates for a Language-Agnostic Deductive
Program Verifier

validate such verifiers obtained via the K framework, and

Wils and Jacobs [46] validate VeriFast [89].[46]: Wils et al. (2023), Certifying C pro-
gram correctness with respect to CH2O with
VeriFast
[89]: Jacobs et al. (2011), VeriFast: A Pow-
erful, Sound, Predictable, Fast Verifier for C
and Java

There is work on implementing VC generators in an interactive theorem

prover and then proving the implementation sound once and for all, al-

though none of the proven tools are used in practice. Homeier and Martin

[32] prove a VC generator sound in HOL for an executable programming

[32]: Homeier et al. (1995), A Mechanically
Verified Verification Condition Generator language and a simpler VC generation technique than Boogie’s. They

run their VC generator within HOL, which produces a set of verification

conditions that a user needs to prove manually in HOL. Herms et al. [90]

[90]: Herms et al. (2012), A Certified Multi-
prover Verification Condition Generator

prove a VC generator inspired by Why3 sound in Coq. However, some

more-challenging aspects of Why3’s VC transformation and polymorphic

type system are not handled. They extract their implementation to OCaml

and combine it with existing solvers, which results in a fully automated

executable tool. Cohen and Johnson-Freyd [36] implement and prove[36]: Cohen et al. (2024), A Formalization
of Core Why3 in Coq

sound two VC rewritings performed by Why3 in Coq to demonstrate

their novel Why3 mechanisation. They do not consider VC generation

itself. Blatter et al. [34] prove a VC generator sound in Coq, which veri-[34]: Blatter et al. (2022), Certified Verifi-
cation of Relational Properties

fies relational properties for programs with pointers. Vogels et al. [31]

[31]: Vogels et al. (2010), A machine-checked
soundness proof for an efficient verification
condition generator

prove a toolchain for a Boogie-like language sound in Coq, including

an assignment elimination transformation and VC generation. However,

the language is quite limited: without unstructured control flow,
41

loops

41: Recall that we do support unstruc-

tured control flow in the CFG representa-

tion (but not in the AST representation).

(i. e. no need for eliminating cycles), functions, or polymorphism (i. e.
no type encoding). Their (once-and-for-all) proof of the soundness of

assignment elimination is set up differently to our (per-run generated)

proof. Their implementation’s VC generation is based on an efficient

weakest precondition for structured control flow [22], which is different[22]: Leino (2005), Efficient weakest precon-
ditions

from an efficient weakest precondition for unstructured control flow

used in Boogie [23].[23]: Barnett et al. (2005), Weakest-
precondition of unstructured programs

There are also other kinds of once-and-for-all proved verifiers. The Verasco

static analyzer [91] is proved in Coq. Verasco supports a realistic subset[91]: Jourdan et al. (2015), A formally-
verified C static analyzer

of C, but its performance is not yet on par with unverified, industrial

analyzers. Doenges et al. [92] prove the soundness of an algorithm in Coq,[92]: Doenges et al. (2022), Leapfrog: certi-
fied equivalence for protocol parsers

which verifies the equivalence of protocol parsers. Their algorithm is

expressed as an inductive relation. Running the algorithm corresponds to

executing a tactic within Coq that automatically finds a derivation using

the rules of the relation. For some of the conditions that arise during the

proof search, the tactic applies a once-and-for-all proved translation to

an SMT formula, which is then handed to an SMT solver; as in our case,

the SMT solver is currently trusted.

Per-run validation has been explored in settings different from program

verification. Alkassar et al. [93] adjust graph algorithms to produce[93]: Alkassar et al. (2014), A Framework
for the Verification of Certifying Computa-
tions

witnesses that can be then used by verified validators to check whether

the result is correct. In the context of compiler soundness, many validation

techniques express a per-run validator in Coq, prove it sound once and

for all, and then extract executable code (the extraction must typically

2.12. Future Work 91

be trusted) [69, 94, 95]. In the verified CompCert compiler [68], such [69]: Barthe et al. (2014), Formal Verifica-
tion of an SSA-Based Middle-End for Comp-
Cert
[94]: Tristan et al. (2008), Formal Verifica-
tion of Translation Validators: A Case Study
on Instruction Scheduling Optimizations
[95]: Tristan et al. (2010), A simple, verified
validator for software pipelining
[68]: Leroy (2006), Formal certification of
a compiler back-end or: programming a com-
piler with a proof assistant

validators have been used in combination with the once-and-for-all

approach. Validators are used for transformations that can be more easily

validated than proved sound once and for all. One such example related to

our certification of assignment elimination is the validation of CompCert’s

SSA transformation [69], dealing also with versioned variables in the

[69]: Barthe et al. (2014), Formal Verifica-
tion of an SSA-Based Middle-End for Comp-
Cert

target (but not with assume commands that prune executions). In contrast

to our work, they require an explicit notion of CFG domination and they

do not use a global versioning scheme to efficiently check that two parts

of the CFG constrain disjoint versions. Our global versioning idea is

similar to a technique used for the validation of a dominator relation in a

CFG [96], which assigns intervals to basic blocks (as opposed to assigning

[96]: Blazy et al. (2015), Validating Dom-
inator Trees for a Fast, Verified Dominance
Test

versions to variables) to efficiently determine whether a block dominates

another one. The validation of the Cogent compiler [39] follows a similar

[39]: Rizkallah et al. (2016), A Framework
for the Automatic Formal Verification of Re-
finement from Cogent to C

approach to ours in that it generates certificates in Isabelle.

It would be interesting to explore, in our setting, the trade-offs of using a

per-run validator that is proved once and for all (as used in CompCert)

compared to our approach of generating certificates in Isabelle. As a first

step toward this direction, one could attempt such an alternate approach

solely for validating our local block lemmas. Our current approaches for

automatically proving local block lemmas are largely syntax-directed: we

automatically prove relational judgements by applying rules that match

syntactically on the goal to be proved (see Subsection 2.4.4 on page 42,

Subsection 2.5.3 on page 54, and Subsection 2.6.4 on page 68). One could

define a validator as a Boolean function in Isabelle that essentially mimics

our syntax-directed proof search and returns true if the proof search

succeeds.

Finally, various works present a semantics for a Boogie subset, but they

either handle a smaller subset than our formalised subset, or do not

formalise all aspects of their presented semantics. Leino [1] describes the [1]: Leino (2008), This is Boogie 2
semantics for the subset covered in this dissertation on paper. In their

work, various parts are not given a formal semantics, but rather discussed

at a higher level. Vogels et al. [31] mechanise a small subset of Boogie [31]: Vogels et al. (2010), A machine-checked
soundness proof for an efficient verification
condition generator

in Coq, but do not handle unstructured control flow, loops, and global

declarations. Moreover, they represent Boogie expressions semantically

(i. e. as functions from Boogie states to values), instead of syntactically

in our case. Thus, they do not, for instance, give a semantics to the

quantification over types. Grigore [97] formalises a similar subset on [97]: Grigore (2012), The Design and Algo-
rithms of a Verification Condition Generator

paper as Vogels et al. [31] and they also model expressions semantically in

their semantics. In contrast to Vogels et al. [31], they include unstructured

control flow.

2.12. Future Work

In this section, we discuss some avenues for future work.

2.12.1. Support for Front-End-Generated Boogie Programs

Our work targets an important core subset of Boogie that captures many

of the challenges that Boogie’s implementation faces. However, our

92 2. Formally Validating a Verification Condition Generator

supported subset is not yet large enough to support Boogie programs

generated by Boogie front-ends, which is the main way Boogie is used.

Thus, one important direction for future work is to extend our work such

that it can be applied to programs generated by Boogie front-ends. There

are two subdirections to achieve this goal: (1) increase the Boogie subset

for which certificates are generated, and (2) ensure that Isabelle is able to

check the generated certificates also for Boogie programs generated by

Boogie front-ends.

For subdirection (1), features that are currently unsupported and that are

used by front-ends include: more built-in types (such as maps, bitvectors,

reals), procedure calls, conditions on variable declarations (called where-
clauses in Boogie) that ensure the specified conditions hold whenever the

variable is havocked, gotos and breaks. Some of these can be expressed

via our subset and thus are not challenging (such as procedure calls and

where-clauses). Two of the most challenging features are maps and gotos.

We will discuss maps below in Subsection 2.12.2. For gotos, we already

support the CFG transformations applied on the CFG obtained from an

AST with gotos (and breaks). The challenge is to add goto support for

the AST-to-CFG transformation. One challenge here is to do so efficiently

with Boogie’s internal AST representation, which is not straightforward

since the standard small-step goto semantics for such an AST computes

the continuation by traversing the entire program.

For subdirection (2), there are two key points. First, the certificates for

the final generation of the VC must be made more robust to avoid,

for example, the incompleteness with function calls and conversions

observed in Section 2.10, since such instances also arise in front-end-

generated Boogie programs. As we have discussed in Subsection 2.6.4,

improving the automation to deal with the function call incompleteness

should be straightforward. Second, we must make sure that the generated

certificates are sufficiently optimised such that Isabelle is able to check

these certificates in reasonable time also for large programs. There is one

bottleneck currently that shows up for large programs, but which we

should be able to optimise away using existing techniques, as we discuss

next.

Proofs in our certificate often need to show that a Boogie variable is

declared with a concrete type. In the Isabelle embedding of the Boogie

program, the declared variables are represented via a list of tuples, each

tuple consisting of a variable name and its declared type. We prove a

lemma once for each declared variable that states what its declared type

is (i. e. essentially creating a lookup table mapping Boogie variables to

their types) and then use this lemma in proofs. The problem is that each

proof currently results in Isabelle performing a linear search through the

list of declared variables (until the first matching tuple is reached), which

means the entire proof effort in Isabelle for these lemmas is quadratic in

the number of Boogie variables (since there is one lemma per variable).

This can lead to slow proofs, since front-end-generated Boogie programs

can have a large number of variables (moreover, assignment elimination

creates a fresh variable for every variable update). This process can

be optimised using existing techniques. One approach would be to

represent the declared variables in a binary search tree, which would

make the proof effort for a single lemma logarithmic instead of linear in

the size of the declared variables. The Isabelle seL4 kernel verification

2.12. Future Work 93

code already provides a generic library for working with such a binary

search tree approach [98]. We have performed some initial experiments [98]: seL4 Developers (n.d.), Efficient
lookup table creation in Isabelle

in a simplified setting (incorporating such a library into our certificate

generation architecture will take more work), which confirm that such a

binary search tree approach significantly speeds up the time for proving

the lemmas.

2.12.2. Support for Maps

Boogie supports two kinds of Boogie maps: non-polymorphic and polymor-
phic maps. Both maps are used in practice: the former is used in many

usages of Boogie, while the latter is used mainly by Boogie front-ends

modelling a heap. Thus, adding support for both kinds is important.

However, providing a formal model is challenging in both cases as we

will discuss next.

Non-polymorphic maps

A non-polymorphic map is a standard total map, which is specified

via domain types 𝐷1 , 𝐷2 , ..., 𝐷𝑛 and a range type 𝑅 (the corresponding

map type is written as [D1,D2,...,Dn]R in Boogie) and maps a tuple of

values (𝑣1 , 𝑣2 , ..., 𝑣𝑛) where 𝑣𝑖 is of type 𝐷𝑖 to a value of the range type

𝑅.

It is not clear how to formalise non-polymorphic maps in Isabelle. A

naive approach would be to extend the definition of Boogie values as

follows:

′𝑎 val ≜ IntVal(𝑖) | BoolVal(𝑏) | AbsVal(′𝑎) | MapVal(′𝑎 val list ⇒ ′𝑎 val)

This extended definition contains an additional constructor MapVal for

the map values, which are represented by functions from lists of values

to values. This is an ill-formed definition: There exists no interpretation

of
′𝑎 val that satisfies the equation, since there will always be more

functions from type
′𝑎 val list ⇒ ′𝑎 val than values of type

′𝑎 val (if the

interpretation of
′𝑎 val is non-empty, which it must be due to the other

constructors).

So, to support maps one must first find a way to model them formally.

In many practical cases, only maps of finite size are needed. Restricting

maps to have finite size would make the above definition well-formed (i. e.
replace

′𝑎 val list ⇒ ′𝑎 val by the type of maps of finite size from
′𝑎 val

to
′𝑎 val). The definition remains well-formed if one restricts maps to be

of countable size. In both of these cases (finite and countable), values

not in the domain could be mapped to some default value. However, it

turns out that there are cases where maps of uncountable size might be

required. For instance, the Boogie front-end Dafny supports the imap

type, which models maps of infinite size. These maps are encoded into

Boogie maps, which have the same domain and range types as the imap.

The domain of an imap does not have any restriction and can thus have

uncountable size (Dafny accepts reals as the domain). We do not know

to what extent such maps of uncountable size in Dafny are used, but if

they are used, then one needs a more general solution.

94 2. Formally Validating a Verification Condition Generator

Polymorphic maps

Polymorphic maps are like non-polymorphic maps except that they

additionally contain type parameters that the domain and range types

depend on. For instance, the standard polymorphic map to model a heap

has the polymorphic map type <T>[ref, field T]T: a total map storing,

for any type T, values of type T given (as key) a reference and field with

type argument T. (Note that ref and field are type constructors.) The

advantage of using a polymorphic map in this case is that a single map

can be used such that a lookup with a field 𝑓 evaluates to a value of the

type associated with 𝑓 . With non-polymorphic maps, one would need to

either model a single universe type that captures all possible values and

use coercion functions between the universe type and the original types,

or one would need to track multiple non-polymorphic maps.

To our knowledge, there exists no formal model for Boogie’s polymorphic

maps. Providing a general model is challenging: in particular, Boogie’s

polymorphic maps are impredicative in general: a map 𝑚 of type <T>[T]T’

permits any value as a key, including the map 𝑚 itself! However, front-

ends use polymorphic maps typically in restricted ways (e.g. without

using an impredicative type). So, a simpler solution is to provide a formal

model that explains concrete instances of polymorphic maps that are

used by front-ends. In Chapter 3, we will show an approach to do so

for the polymorphic map type used by Viper for the heap. Instead of

adding the polymorphic map type as a first-class citizen to our Boogie

formalisation, we model the type via type constructors and polymorphic

functions, which allows us to reuse our existing Boogie formalisation.

This requires representing map lookups and updates differently in the

Boogie program (via calls to the introduced polymorphic functions).

(This approach could also be taken for non-polymorphic map types,

but since many different variations are used compared to a small finite

and statically fixed number of polymorphic map types for a front-end,

this approach does not scale to non-polymorphic map types.) Finally,

note that the Boogie implementation performs a similar desugaring step

internally for polymorphic maps.

2.12.3. Monomorphisation

Boogie supports three type encodings to desugar Boogie’s type system.

Our certificate-producing tool currently supports only one of the encod-

ings as discussed in Section 2.6, which we refer to as the predicate encoding
in this subsection. In particular, we do not support the monomorphisation
encoding, which (1) eliminates the polymorphism of a Boogie program

in a separate transformation by considering each relevant instantiation

of the type parameters (i. e. each instantiation that appears in the pro-

gram), and (2) desugars type constructors with multiple arguments into

nullary type constructors (one for each relevant instantiation). When

we finished our tool, the monomorphisation encoding did not support

the quantification of types or polymorphic maps. As a result, Boogie by

default used the predicate encoding with these features. More recently,

Boogie developers extended monomorphisation to the quantification of

types and polymorphic maps [99], and it is now the default encoding for[99]: Qadeer (2022), Monomorphization of
polymorphic maps and binders

programs with these features. So, it would be useful to add support for

2.12. Future Work 95

type option _;
function some<T>(i: T) : option T;
function f<T>(i: T) : bool;
axiom (forall <T> :: (forall i : T :: f(i) == f(some(i))));

procedure p(x: int) {
assume f(x);
...

}

Figure 2.30: Boogie program that cannot be monomorphised by the existing Boogie verifier, since infinitely

many instantiations would be taken into account. The code after the assume command in procedure p is not

provided explicitly; this assume command is sufficient to trigger infinitely many instantiations.

the monomorphisation encoding given that it is now the default encoding

for most relevant Boogie programs. One challenge in formally validating

monomorphisation is justifying the monomorphisation of universal type

quantification, since monomorphisation essentially quantifies over only

a subset of all possible types.

While monomorphisation is the default encoding, the predicate encoding

still has advantages compared to monomorphisation in some cases. One

advantage is that for certain programs, the predicate encoding currently

performs better. For instance, the predicate encoding performs better for

Boogie programs generated by the existing Viper-to-Boogie implemen-

tation. We have not investigated the details, but one reason seems to be

that monomorphisation must consider very many instantiations for the

Boogie programs generated by the Viper-to-Boogie implementation. One

could look into ways of making the generated Boogie programs more

suitable for monomorphisation.

A second advantage is that the predicate encoding is able to handle

programs that cannot be monomorphised. For instance, Boogie cannot

monomorphise the program shown in Figure 2.30, but Boogie is able to

successfully apply the predicate encoding to this program. The reason

Boogie cannot monomorphise this program is that Boogie’s monomor-

phisation currently would take infinitely many instantiations into account

for the type parameter T in the definition of function f. In particular, the

assume command in procedure p instantiates T with int, which triggers

infinitely many instantiations of T via the axiom in the program. The

reason is that for any considered instantiation 𝜏, the axiom also con-

tains the instantiation option 𝜏 (because of the expression f(some(i))).

Thus, Boogie’s monomorphisation would consider instantiations int,

option int, option (option int), and so on.

Supporting the development of monomorphisation

When Boogie developers were working on extending their monomor-

phisation approach to polymorphic maps and type quantification in

2022 (which was eventually merged [99]), we were able to support

them by formally explaining what a feasible formal semantics for

these features is, using our work as a justification for this semantics.

For type quantification, we define a formal semantics in Section 2.3

on page 24 and justify this semantics in two ways: (1) we demonstrate

96 2. Formally Validating a Verification Condition Generator

that Boogie’s generated verification condition respects this semantics,

and (2) we demonstrate that this semantics can be used to justify

existing front-end translations into Boogie (as we show via our work

in Chapter 3). Our work does not provide a formal semantics for

general polymorphic maps, but in Chapter 3 we demonstrate how to

formally capture instances of polymorphic maps used in practice (e.g.
to represent heaps), which helped gain a deeper understanding for

their intended meaning.

This concludes this chapter on the formal validation of the existing Boogie

verifier implementation. Our work makes the existing implementation

certificate-producing, thus significantly increasing the implementation’s

trustworthiness. The next chapter will present the formal validation

of a front-end translation into Boogie. The corresponding soundness

results are expressed w.r.t. the formal Boogie semantics developed in this

chapter, thus showing that our formalised Boogie semantics can be used

to justify the soundness of a front-end translation.

Formally Validating Translations

into an Intermediate Verification

Language 3.

3.1. Introduction

As discussed in Section 1.1 on page 3, many translational program verifiers

translate the input program into an intermediate verification language

(IVL); we call this a front-end translation. An IVL comes with its own

back-end verifier that ultimately reduces IVL programs to logical formulas

(such as the Boogie verifier, which is the focus of Chapter 2). There

are many examples of practical front-end translations; e.g. Corral [15], [15]: Lal et al. (2014), Powering the static
driver verifier using corral

Dafny [3], SMACK [16], SYMDIFF [71] and Viper [7] translate to the

[3]: Leino (2010), Dafny: An Automatic
Program Verifier for Functional Correctness
[16]: Carter et al. (2016), SMACK software
verification toolchain
[71]: Lahiri et al. (2012), SYMDIFF: A
Language-Agnostic Semantic Diff Tool for
Imperative Programs
[7]: Müller et al. (2016), Viper: A Verifi-
cation Infrastructure for Permission-Based
Reasoning

imperative Boogie IVL [1]. Creusot [2] and Frama-C [4] translate to the

[1]: Leino (2008), This is Boogie 2
[2]: Denis et al. (2022), Creusot: A Foundry
for the Deductive Verification of Rust Pro-
grams
[4]: Kirchner et al. (2015), Frama-C: A
software analysis perspective

functional Why3 IVL [17]. Multiple layers of front-end translations and

[17]: Filliâtre et al. (2013), Why3 — Where
Programs Meet Provers

IVLs can also be composed (e.g. Prusti [19] builds on Viper as an IVL).

[19]: Astrauskas et al. (2019), Leveraging
Rust Types for Modular Specification and
Verification

To ensure that successful verification indeed implies that the input

program conforms to its specification, translational program verifiers

that apply a front-end translation must meet two soundness conditions:
(1) front-end soundness: the translation into the IVL is faithful, i. e. correctness

of the produced IVL program implies correctness of the input program,

and (2) IVL back-end soundness: if the IVL back-end verifier reports success,

then the IVL program is correct. In this chapter, we focus on establishing

front-end soundness for existing verifier implementations used in practice.

IVL back-end soundness is an orthogonal concern. Our results on front-

end soundness can be combined with work on establishing IVL back-end

soundness to obtain end-to-end guarantees; this includes our own IVL

back-end verifier results developed for Boogie in Chapter 2, and other

works (including the validation of SMT solvers) [8–10, 35].

[8]: Böhme et al. (2010), Fast LCF-Style
Proof Reconstruction for Z3
[9]: Ekici et al. (2017), SMTCoq: A Plug-In
for Integrating SMT Solvers into Coq
[10]: Fleury et al. (2019), Reconstructing
veriT Proofs in Isabelle/HOL
[35]: Garchery (2021), A Framework for
Proof-carrying Logical Transformations

Existing work on ensuring front-end soundness is based on idealised

implementations that are formalised on paper or in an interactive theo-

rem prover. These idealised implementations typically do not consider

optimisations performed by more practical verifier implementations. As

discussed in Chapter 1, there is a large gap between these implemen-

tations and existing verifier implementations used in practice. In this

chapter, we bridge this gap for the first time, developing an approach to

formally validate the front-end soundness of translations used in existing,
practical verifier implementations.

Proving front-end soundness once and for all for a realistic verifier

implementation is practically infeasible, since such implementations

of front-end translations are large (e.g. 17.2 KLOC and 8.5 KLOC for

the Dafny-to-Boogie and Viper-to-Boogie front-ends, respectively) and

are typically written in languages that lack a full formalisation (e.g.
C# for Dafny-to-Boogie and Scala for Viper-to-Boogie). Instead, we

develop a formal translation validation approach that, given a formal

semantics for the input language and IVL, automatically generates a

formal certificate on every run of the verifier via an instrumentation

of the existing implementation. Our certificates are expressed in the

Isabelle theorem prover [12], and thus provide formal and trustworthy [12]: Nipkow et al. (2002), Isabelle/HOL -
A Proof Assistant for Higher-Order Logic

guarantees, effectively removing the (substantial) front-end translation

from the trusted code base of the verifier. Our approach ensures that

98 3. Formally Validating Translations into an Intermediate Verification Language

the generated certificates contain sufficient information for Isabelle to

automatically check them. Ensuring the automatic checking of certificates

is crucial, since their size and complexity make manually checking them

practically infeasible.

3.1.1. Challenges

Formally validating front-end translations is challenging for three main

reasons:

1. Semantic gap: There is a large semantic gap between a front-end

language and an IVL, which is due to large differences in the state model,

execution model, and program logics used to reason about programs. For

instance, states in most front-end languages have a heap, while Boogie

and Why3 do not. Moreover, the evaluation of expressions and execution

of statements differ significantly between a front-end language and an

IVL. For instance, Viper heap accesses are partial operations that must

be guarded by semantic conditions ultimately checked by verification,

while Boogie and Why3 use syntactic checks to guard state accesses

such as disallowing global variables in Boogie axioms and restricting

aliasing between mutable variables in Why3. Moreover, the execution

of certain Viper statements is complex since the execution must take

complex assertions into account, while the execution of Boogie statements

is straightforward. Finally, front-ends use complex program logics, such

as dynamic frames [100] in Dafny, a flavour of separation logic [33, 101][100]: Kassios (2006), Dynamic Frames:
Support for Framing, Dependencies and Shar-
ing Without Restrictions
[33]: Smans et al. (2012), Implicit Dynamic
Frames
[101]: Parkinson et al. (2012), The Relation-
ship Between Separation Logic and Implicit
Dynamic Frames

in Viper, and prophetic reasoning in Creusot [2], whereas Boogie and

[2]: Denis et al. (2022), Creusot: A Foundry
for the Deductive Verification of Rust Pro-
grams

Why3 do not have built-in support for such logics. To bridge the semantic

gap, front-ends translate input programs into a complex combination

of low-level operations (e.g. nondeterministic assignments, assume and

assert commands) and background logical axiomatisations of input

language concepts (e.g. axiomatising the consistency of a front-end state).

Formal validation needs to precisely account for the combination of these

ingredients, while allowing the separation of translation aspects for the

sake of modularity and maintainability.

2. Diverse translations: Practical front-end translations are diverse in the

sense that they use multiple alternative translations for the same feature,

e.g. more efficient alternative translations that are sound only in certain

cases. These translations also evolve frequently over time, as new tech-

niques and features are developed or optimised; to be practically useful,

a formal approach to validation should provide means of minimising

the impact of the exchange of one translation for another.

3. Non-locality: The soundness of practical translations of a fragment of

the input program may depend on several checks that are performed

at different places in the IVL program. For instance, the translation of

a procedure call might be sound only because well-formedness of the

procedure specification has been checked elsewhere in the generated IVL

code. Such non-local checks are commonly used to speed up verification,

for instance, to check well-formedness conditions once and for all rather

than each time a specification is used. However, they complicate the

soundness argument for the translation, which needs to somehow track

the dependencies on properties checked elsewhere.

3.1. Introduction 99

3.1.2. This Chapter

We present the first approach for enabling automatic formal validation

for existing implementations of the front-end translations employed in

many practical program verifiers. This validation guarantees front-end

soundness and, thus, makes automated program verifiers substantially

more trustworthy.

The core of our approach is a general methodology for generating

forward simulations [74] between the statements of the input and the IVL [74]: Lynch et al. (1995), Forward and Back-
ward Simulations: I. Untimed Systems

program in a modular way. Our methodology provides solutions to

the three challenges above. It (1) bridges the semantic gap with a novel

approach by which the simulation proof is split into smaller simulations,

(2) supports diverse translations by parameterising simulations along

multiple dimensions (e.g. parameters for the state relation, the to-be-

simulated effect, and the IVL code itself), and (3) handles non-locality by

systematically and formally tracking dependencies during a simulation

proof.

For concreteness, we present our methodology for the translation from

a core fragment of Viper to Boogie, as implemented in an existing and

actively-used verification tool [102]. This translation is significant because [102]: Viper Developers (2024),

Viper-to-Boogie implementation
(https://github.com/viperproject/carbon)

it exhibits all of the challenges discussed above and because both Viper

and Boogie are widely used. While our methodology is phrased in terms

of Viper and Boogie, we have designed our approach, which solves the

key challenges above, to generalise to other front-end translations (e.g.
the Dafny-to-Boogie translation).

We have applied our methodology via an instrumentation of the existing

Viper-to-Boogie translation such that on every run of the translation,

an Isabelle certificate establishing front-end soundness is automatically

produced (for a subset of Viper programs). The produced certificates

can be automatically checked by Isabelle. This certificate-producing

support for the existing Viper-to-Boogie translation is an important

result, since Viper is used by many program verifiers for mainstream

programming languages. Such verifiers include Gobra (Go) [5], Prusti [5]: Wolf et al. (2021), Gobra: Modular
Specification and Verification of Go Programs

(Rust) [19], Nagini (Python) [18], and VerCors (Java) [6]. These verifiers

[19]: Astrauskas et al. (2019), Leveraging
Rust Types for Modular Specification and
Verification
[18]: Eilers et al. (2018), Nagini: A Static
Verifier for Python
[6]: Blom et al. (2017), The VerCors Tool
Set: Verification of Parallel and Concurrent
Software

use Viper as an IVL: they translate the input program into Viper via a

front-end translation. Thus, the soundness of each of these verifiers relies

on the Viper verifiers being sound. A key feature of Viper is that Viper

has a built-in heap and supports separation logic [20] reasoning about

[20]: Reynolds (2002), Separation logic: A
logic for shared mutable data structures

heap-manipulating programs. As a result, for separation logic verifiers,

it is easier to implement a translation into Viper than using another IVL

that does not have support for separation logic reasoning. While Viper’s

main use case is as an IVL, we will treat Viper as a front-end language

that is translated to Boogie in this chapter.

We have applied our methodology to the existing Viper-to-Boogie transla-

tion for a core subset of Viper. However, we have taken care throughout

this work to develop general approaches that could be used for different

Viper-to-Boogie translations and that could be extended to larger subsets

of Viper. First, this is exemplified by the fact that our methodology itself is

general and can be applied to front-end translations for source languages

other than Viper. Second, the concrete formalisation of our methodology,

which is expressed in terms of Viper (as source language) and Boogie

100 3. Formally Validating Translations into an Intermediate Verification Language

(as target IVL), captures many more possible translations than just the

existing Viper-to-Boogie translation due to our approach being generic

along multiple dimensions (e.g. our approach is generic in the state

relation that connects source program states with corresponding IVL

program states, and is also generic in the precise IVL statements used to

capture a source construct). Third, while we generate certificates for a

core subset of Viper, we formalised a larger Viper subset and took this

larger subset into account for the metatheory involved in the application

of our methodology, since there are features outside of our core subset,

which significantly impact the formalisation (such as the Viper permission
introspection feature). Moreover, we also took care to make our approach

extensible to Viper features that we did not formalise. Thus, we ensure

that extensions to larger Viper subsets will not require substantially

changing the existing results. Fourth, we develop approaches that are

designed to scale to more complex translations and larger language

subsets, such as finding systematic ways of using a single approach to

deal with different aspects of the language, breaking down the original

problem into small subproblems, and proving generic results that can be

reused for different translations without much extra work.

One challenge specific to making our approaches extensible to larger

Viper subsets than our core subset (for which we support certificates)

was that we could not reuse an existing formal semantics of Viper.

Previous attempts at formalising Viper features in such larger Viper

subsets did not model certain features accurately, and did not consider

the implications of combining certain features. Two examples for such

features are permission introspection and Viper predicates. So, part of our

work on ensuring extensibility was investigating the intended semantics

of such features. We included permission introspection as part of our

formalisation, which also had a significant impact on our formalisation

of features in our core subset. Moreover, we discovered novel insights on

the semantics of Viper predicates; we did not formalise Viper predicates,

but we included constructs in our formalisation to ease an extension to

predicates as a consequence of our insights. In particular, we discovered

that the combination of Viper unfolding expressions (a Viper feature used

with predicates) and permission introspection has an unclear semantics.

This lack of clarity likely does not impact practical Viper programs, but

resolving the meaning of this combination is important to clarify what

both of these features mean and also will help future use cases that

may rely on this combination. We discuss another novel insight, which

fundamentally impacts how to formalize Viper predicates, as part of our

discussion on future work (Subsection 3.9.1 on page 195).

One reason why we were able to identify such novel insights is because

our goal was to formally capture the connection of a verifier implementation
that is used in practice with a Viper semantics. For certain features outside

of our core subset (such as permission introspection and predicates), we

analysed how the Viper-to-Boogie implementation was handling these

features, and explored whether our formalised semantics and validation

approach would be easily extensible to such features.

The work in this chapter had an impact on the existing Viper-to-Boogie

implementation. We discuss some of this impact in Section 3.8. In partic-

ular, we improved various aspects of the existing implementation (e.g.
generating better error messages and simplifying the implementation),

3.1. Introduction 101

and we discovered two soundness bugs, one of which we fixed. The other

bug is outside of our formalised subset (involving predicates), which

we have not yet fixed because fixing the bug requires answering design

questions for Viper. This bug arises in a corner case that likely does not

impact practical Viper programs, but fixing the bug is still important and

will improve Viper as a language due to the design questions that arose

as a result of this bug.

Contributions

We make the following technical contributions:

▶ We develop a general methodology for the automatic validation of

front-end translations based on forward simulation certificates. We

present this methodology for the translation from Viper to Boogie.

As a foundation for the certificates, we formalise a semantics for a

core subset of Viper in Isabelle and use our Isabelle formalisation

for Boogie presented in Chapter 2.

▶ We instrument the existing Viper-to-Boogie implementation such

that on every run, for a subset of Viper, it automatically generates an

Isabelle certificate justifying the soundness of the translation. These

generated certificates can be checked automatically in Isabelle,

which ensures front-end soundness of the Viper verifier.

▶ Our evaluation on a diverse set of Viper programs demonstrates

our approach’s effectiveness: we were able to generate certificates

and check them in Isabelle fully automatically in all cases.

▶ As part of justifying the axioms used in Boogie programs, we

provide the first approach to formally deal with a restricted version

of Boogie’s (impredicatively-)polymorphic maps [67]. [67]: Leino et al. (2010), A Polymorphic
Intermediate Verification Language: Design
and Logical Encoding

Outline

Section 3.2 provides the necessary background on Viper, and introduces

our novel semantics for a Viper subset. Section 3.3 illustrates the general

challenges for justifying front-end translations presented above on the

existing Viper-to-Boogie translation, and discusses other aspects of the

existing Viper-to-Boogie translation that are relevant for the rest of

this chapter. Section 3.4 introduces our general forward simulation

methodology for relating front-end statements with IVL statements; the

section presents the general concepts on Viper and Boogie statements.

Section 3.5 presents how we formally validate the existing Viper-to-Boogie

implementation using our forward simulation methodology. Section 3.6

evaluates the certificates generated by our instrumentation. Section 3.7

presents related work and Section 3.8 discusses the impact this chapter

had on the Viper ecosystem. Finally, Section 3.9 discusses directions for

future work.

Access to tool and Isabelle formalisation

Our certificate-producing version of the Viper-to-Boogie implementation

is available online:

102 3. Formally Validating Translations into an Intermediate Verification Language

▶ Repository:

https://github.com/viperproject/carbon-proofgen

▶ Branch for dissertation: dissertation-gaurav

▶ Commit hash at time of dissertation submission:

3b4215d2db55a2af46265cd801e678fc9410e50f

The main code for generating certificates is in the src/main/scala/viper/-
carbon/proofgen folder, which contains exclusively new code added by

us. The existing Viper-to-Boogie implementation itself is spread across

the remaining subfolders of src/main/scala/viper/carbon. For instance, sr-
c/main/scala/viper/carbon/Carbon.scala contains the entry point of the im-

plementation and src/main/scala/viper/carbon/modules contains the code

implementing different parts of the translation. We have instrumented

parts of these folders containing the existing Viper-to-Boogie implemen-

tation in order to obtain sufficient information to generate certificates.

The number of lines of added code for the instrumentation (fewer than

500 lines) is significantly smaller than the code that actually generates

certificates (the latter is in src/main/scala/viper/carbon/proofgen).

Our formal Viper semantics and the metatheory used by the certificates

(both expressed in Isabelle) is available online [103]:[103]: Parthasarathy (2024), Viper Seman-
tics and Certificate Metatheory Formalisa-
tion ▶ Repository:

https://github.com/viperproject/viper-roots

▶ Branch for dissertation: dissertation-gaurav

▶ Commit hash at time of dissertation submission:

845f8eed90c6dd51fad7794a98bab4a5bf5a598d

The folder vipersemcommon contains the syntax of the Viper language as

well as the formalisation of some basic concepts, and the folder viper-
total-heaps contains the main parts of the formalisation relevant for this

chapter.

Finally, our publicly-available artifact [104] that supplements our corre-[104]: Parthasarathy et al. (2024), Towards
Trustworthy Automated Program Verifiers:
Formally Validating Translations into an In-
termediate Verification Language – Artifact

sponding conference publication associated with this chapter [60] is also

[60]: Parthasarathy et al. (2024), Towards
Trustworthy Automated Program Verifiers:
Formally Validating Translations into an
Intermediate Verification Language

available online:

https://zenodo.org/records/10802176

This artifact contains older snapshots of our certificate-producing Viper-

to-Boogie implementation and our Isabelle formalisation (but still rela-

tively up-to-date versions). Moreover, this artifact includes instructions

for exploring our certificate-producing implementation and our Isabelle

formalisation, and includes instructions for reproducing our evalua-

tion.

3.2. A Formal Semantics for Viper

In this section, we first present the Viper subset relevant for this disser-

tation (Subsection 3.2.1) and show a Viper example (Subsection 3.2.2).

Next, we present a novel operational semantics for this Viper subset

(Subsection 3.2.3, Subsection 3.2.4, Subsection 3.2.5), which we have

mechanised in Isabelle, and then present correctness of a Viper program

in terms of this semantics (Subsection 3.2.6). Then, we illustrate the se-

mantics on a Viper example (Subsection 3.2.7). Finally, we discuss design

https://github.com/viperproject/carbon-proofgen
https://github.com/viperproject/viper-roots
https://zenodo.org/records/10802176

3.2. A Formal Semantics for Viper 103

VUnaryOp ∋ uop ::= − | !
VBinaryOp ∋ bop ::= == | != | + | − | ∗ | /Int | /Perm | mod | ≤ | < | ≥ | > | && | || | ⇒

VExpr ∋ 𝑒 ::= 𝑥 | true | false | 𝑖 | write | none | null | 𝑒. 𝑓 | 𝑒 bop 𝑒 | uop(𝑒) |
𝑒 ? 𝑒 : 𝑒 | perm(𝑒. 𝑓)

VAssert ∋ 𝐴 ::= 𝑒 | acc(𝑒. 𝑓 , 𝑒) | 𝐴 && 𝐴 | 𝑒 ⇒ 𝐴 | 𝑒 ? 𝐴 : 𝐴

VType ∋ 𝜏 ::= Int | Bool | Ref | Perm
VStmt ∋ 𝑠 ::= 𝑥 := 𝑒 | 𝑒. 𝑓 := 𝑒 | ®𝑦 := 𝑚(®es) | 𝑚(®es) | inhale 𝐴 | exhale 𝐴 | assert 𝐴 |

var 𝑥 : 𝜏 ; 𝑠 | 𝑠; 𝑠 | if (𝑒) {𝑠} else {𝑠}
VMethodDecl ∋ methodDecl ::= method 𝑚(# „𝑥 : 𝜏) returns (# „𝑦 : 𝜏)

requires 𝐴

ensures 𝐴

{ 𝑠 }
VFieldDecl ∋ fieldDecl ::= field 𝑓 : 𝜏

VProg ∋ prog ::=
„

fieldDecl;
„

methodDecl

Figure 3.1: The syntax of our formalised Viper subset. 𝑚 (method name) and 𝑓 (field name) denote Viper

identifiers. 𝑥 and 𝑦 denote variables. 𝑖 denotes an integer constant. write and none denote the full permission

amount (i. e. 1) and the empty permission amount (i. e. 0), respectively. Note that Viper differentiates between

two divisions: integer division and permission division. The former is the Euclidean division between two

integers. The latter is the standard division between two reals (permission amounts in Viper are represented

by reals). In practice, the notation / is used for both and Viper interprets the division based on the type

information, defaulting to real division in ambiguous cases; the notation \ (not used here) forces integer

division. In our formalisation, we use separate syntax for the two divisions. Finally, one can encode Viper’s

support for multiple preconditions (resp. postconditions) in our formalisation by taking the conjunction of

the preconditions (resp. postconditions).

decisions taken for our semantics in Subsection 3.2.8. The presented

Viper semantics forms the basis for our certificates that formally validate

the existing Viper-to-Boogie implementation. We discuss the relationship

of our operational Viper semantics to other Viper formalisations as part

of our discussion on related work (Section 3.7).

3.2.1. The Viper Language

Our supported syntax for Viper programs is shown in Figure 3.1. Viper

is an imperative language, which in the subset considered here consists

of a list of top-level declarations of fields and methods. Reference-field

pairs are used to access Viper’s built-in heap. Field declarations specify

the type of the values stored for corresponding reference-field pairs in

the heap. In our subset, we support integers, Booleans, references, and

permission amounts (whose meaning will become clear below). Each

Viper method has a specification given by a pre- and postcondition,

which are Viper assertions. The body of each Viper method is a Viper

statement and calls to a method 𝑚 within a method body are treated

modularly w.r.t. 𝑚’s specification instead of executing the callee’s body.

In addition to statements, Viper separates assertions from expressions.

Viper’s verification methodology employs a custom advanced program

logic, in this case based on a flavour of separation logic (SL) called

implicit dynamic frames (IDF) [33, 101]

[33]: Smans et al. (2012), Implicit Dynamic
Frames
[101]: Parkinson et al. (2012), The Relation-
ship Between Separation Logic and Implicit
Dynamic Frames

, which reasons about the heap via

permissions. Viper uses a fractional permission model [105] of IDF, which [105]: Boyland (2003), Checking Interfer-
ence with Fractional Permissions

104 3. Formally Validating Translations into an Intermediate Verification Language

associates fractional permission amounts that range between 0 and 1 with

heap locations; nonzero permission is required to read heap locations

and full (i. e. 1) permission is required to write to heap locations. Viper

states explicitly track the currently held permission amount for each heap

location.

In the following, we first discuss Viper assertions. These are essentially

IDF assertions, which include the specification of permissions. Then, we

discuss Viper expressions, and Viper statements.

Assertions and expressions

The accessibility predicate acc(𝑒. 𝑓 , 𝑝) represents a resource (a logical notion

which can be neither freely fabricated nor duplicated): the fractional (𝑝)

amount of permission to access heap location 𝑒. 𝑓 .1 The assertion 𝐴 && 𝐵1: For readers familiar with separation

logics, this is analogous to a fractional

points-to assertion in a separation logic.

expresses the IDF generalisation of the separating conjunction from SL,

which specifies that the permissions in 𝐴 and 𝐵 must sum up to an amount
currently held. In particular, as in SL, since the amount to each heap

location can be at most 1, this means that acc(x.f,p) && acc(y.f,q)

is satisfied only in states in which either p + q is at most 1 or in which

x and y are different. Other assertions include Boolean expressions,

implications where the left-hand side is a Boolean expression, and

conditional assertions 𝑒 ? 𝐴 : 𝐵, which denotes 𝐴 if 𝑒 evaluates to true in

a given Viper state and otherwise denotes 𝐵.

One difference between IDF and SL is that IDF (and thus, Viper) supports

heap-dependent expressions. In particular, in Viper, heap locations can be

read via a field access 𝑒. 𝑓 , where 𝑒 is an expression that evaluates to a

reference and 𝑓 is a field. This means Viper supports expressions such

as x.val == 5 or x.f.f, whose evaluation is partial (only allowed with

suitable permissions). This necessitates a notion of well-definedness checks

on expressions to ensure that those expressions are only evaluated when

suitable permissions are held; we will discuss these in Subsection 3.2.4.

Field accesses express values of heap locations, while accessibility predi-

cate specify permissions to heap locations. This distinction is different

from SL, where points-to assertions specify the permission to a heap lo-

cation and its value. As a result, IDF supports separating conjunctions

𝐴 && 𝐵 where 𝐵 expresses constraints on a heap location via the cor-

responding field access for which 𝐴 already specifies full permission.

For instance, acc(x.f, write) && x.f >= 0 is a typical Viper assertion

(write denotes the full permission amount, that is, permission amount 1).

In SL, one would express the analogous assertion as ∃𝑣. x.f ↦→ 𝑣 ∗𝑣 ≥ 0;
2

2: x.f ↦→ 𝑣 is the SL points-to assertion

denoting full permission to x.f and ex-

pressing that x.f stores value 𝑣. The sym-

bol ∗ is the SL separating conjunction.

the surrounding existential quantifier must be used to express x.f’s value

in both the points-to assertion and the second conjunct.

Apart from field accesses and other basic constructs, Viper expressions

include permission introspection perm(𝑒. 𝑓), which evaluates to the per-

mission currently held at the heap location 𝑒. 𝑓 ; its precise semantics will

become clear in Subsection 3.2.4 and Subsection 3.2.5. Permission intro-

spection is used by Viper front-ends to encode proof search algorithms

and to encode proof obligations. An example of the former is to use

permission introspection to branch on the availability of permissions (e.g.
if (perm(𝑒. 𝑓) == write) {𝑠1} else {𝑠2}), where the statement 𝑠1 may

encode the application of a proof rule that requires full permission to 𝑒. 𝑓 .

3.2. A Formal Semantics for Viper 105

An example of the latter is assert perm(𝑒. 𝑓) == none (none denotes the

empty permission amount, that is, permission amount 0), which checks

that there is no permission left to 𝑒. 𝑓 and fails otherwise (required if a

proof rule demands that no permission to 𝑒. 𝑓 is leaked).
3

3: Front-ends usually model leak checks

using Viper’s forperm construct, which

is a variant of permission introspection

that quantifies over a set of heap locations

for which there is nonzero permission.

Our subset does not cover this variant; it

could be simply encoded if we extended

our subset to include quantifiers.

Statements

Basic Viper primitive statements include variable assignments, field

assignments, and method calls. For method calls, there is a distinction

depending on whether the method returns results in which case the

results are stored in target variables. In terms of control flow, Viper

supports scoped variable declarations (i. e. var 𝑥 : 𝜏 ; 𝑠), sequential

composition and conditional branching. For a scoped variable declaration

var 𝑥 : 𝜏 ; 𝑠, the variable x is nondeterministically assigned a value of

type 𝜏 before executing 𝑠.

Viper uses two main statement primitives to encode separation logic

reasoning: (1) inhale 𝐴 adds the permissions specified by assertion

𝐴 to the state and assumes the logical constraints in 𝐴, (2) exhale 𝐴

removes the permissions specified by 𝐴, and fails if a constraint in 𝐴 does

not hold.
4 inhale and exhale operations are typically used in Viper to 4: For separation-logic-versed readers,

the Hoare triples {𝑅} inhale 𝐴 {𝑅 ∗ 𝐴}
and {𝑅 ∗ 𝐴} exhale 𝐴 {𝑅} reflect this

behaviour (assuming the expressions in

𝐴 and 𝑅 are well-defined).

encode external or more-complex operations. Moreover, as we will see,

method calls are expressed in the semantics by exhaling the precondition

and then inhaling the postcondition of the callee. If the method returns

results, one must additionally assign values nondeterministically for the

target variables before inhaling the postcondition.

Finally, assert 𝐴 checks if exhale 𝐴 would succeed in the current state.

If it does, it leaves the state unchanged, and otherwise fails. This primitive

is encodable via the remaining subset:
5

5: This means replacing assert 𝐴 with

the encoding does not change the cor-

rectness of the program.var b: Bool;

if(b) { exhale A; inhale false } else { exhale true }

Nevertheless, we include it as a separate construct, since (1) the source

language supports it, and (2) Viper tools (including the Viper-to-Boogie

implementation) treat assert differently than the encoded version.

The significance of permission introspection

Our certificate-producing version of the Viper-to-Boogie implementation

generates certificates for the full subset shown in Figure 3.1 except for
permission introspection. We nevertheless formalised permission intro-

spection for two reasons. First, the presence of permission introspection

has a significant impact on the Viper formalisation of other features

included in our subset (and features not supported in our subset). In

particular, permission introspection has an impact on how to formalise

the evaluation of expressions and the semantics of inhale and exhale,

as we will discuss later in this section. Moreover, permission introspec-

tion also impacts how to formalise the correctness of a Viper program.

Second, one of our goals is to ensure the extensibility of our certification

approach to larger Viper subsets (as mentioned at the end of Section 3.1).

These two points together were the reason why we included permission

introspection in our semantics. This way adding certificate-producing

106 3. Formally Validating Translations into an Intermediate Verification Language

support for permission introspection need not change the semantics of

other features in any way. In fact, given our current semantics, adding

certificate-producing support for permission introspection would be

straightforward and similar to our certification of field accesses.

The decision to include permission introspection also led us to explore

its behaviour in combination with other Viper features. As a result, we

observed two new insights: (1) the existing Viper-to-Boogie implementa-

tion was originally not correctly handling permission introspection in

combination with exhale, which we then fixed, and (2) the semantics of

unfolding expressions (a feature outside of our subset) combined with per-

mission introspection is unclear. These insights further show the impact

permission introspection has on the semantics of Viper. We discuss these

insights in more detail in Section 3.8.

Unsupported features

The main Viper features not included in our formalised subset (and

thus also not supported by our certificate-producing Viper version) are:

loops, (labelled) old expressions, quantifiers, more-complex resource

assertions (predicates, magic wands, iterated separating conjunctions),

heap-dependent functions, and domains. For most of these features,

once the semantics is formalised, the generation of certificates should

be similar to the generation of certificates for features that we already

support and thus the general methodology developed in this dissertation

should be directly applicable. We discuss the extension of our work to

unsupported features as part of future work (Section 3.9).

Comparison to Boogie

A fundamental difference between Viper and Boogie is that Viper has a

built-in mutable heap and Boogie does not. Reasoning about a mutable

heap is complex, for instance, because of aliasing: updating a heap

location x.f affects the value stored at heap location y.f if x and y

evaluate to the same value (i. e. if they are aliases). Such aliasing issues

do not arise if one just tracks variables and no heap such as Boogie. As a

result, Viper supports heap reasoning via implicit dynamic frames, while

Boogie uses a simpler logic whose assertions (i. e. expression evaluating

to Booleans) are essentially first-order logic formulas. One consequence

is the large difference in the two state models. A Viper state consists of a

variable store, a heap (mapping heap locations to current values) and a

permission mask (mapping heap locations to current permission amounts),

while a Boogie state simply tracks variable stores. Another consequence

is that Viper’s evaluation of expressions is partial (e.g. heap accesses must

be checked to be well-defined), while Boogie’s evaluation of (well-typed)

expressions is total.

The Viper statement representation used by the Viper verifier imple-

mentation and the Boogie statement representation used by the Boogie

verifier implementation are structured differently (see Figure 2.27 on

page 80 in Chapter 2 for the Boogie statement representation). These

are the representations, which we have formalised, and must formally

connect. The Viper statement representation uses a standard sequential

3.2. A Formal Semantics for Viper 107

field f: Int
field g: Int

method main()
{

var x: Ref
inhale acc(x.f)
var y: Ref
inhale acc(y.g)
x.f := 0
y.g := 100
sum(x, y, 0)
assert x.f == 5050

}

method sum(x: Ref, y: Ref, i: Int)
requires acc(x.f) && acc(y.g, 1/2) &&

x.f == (i * (i - 1)) / 2 && i <= y.g + 1
ensures acc(x.f) && acc(y.g, 1/2) &&

x.f == (y.g * (y.g + 1)) / 2
{

if(i <= y.g) {
x.f := x.f + i
sum(x, y, i+1)

}
}

Figure 3.2: An example of a correct Viper program. main has the trivial pre- and postcondition true, since

main does not explicitly specify a pre- and postcondition. acc(x.f) is syntactic sugar for acc(x.f, write)
(full permission). All divisions in this example are integer divisions.

composition 𝑠1; 𝑠2 to compose two statements 𝑠1 and 𝑠2, whereas the

Boogie statement representation is given by a list of statement blocks. Each

statement block consists of a list of basic commands (i. e. no control flow),

followed by an optional control-flow element. Our validation generates

certificates that directly relates these representations and thus must

bridge this gap.

Other differences include that Viper supports scoped variables, while in

Boogie all local variables must be declared at the beginning of a procedure.

Moreover, Boogie supports quantification over types, which Viper does

not support. Finally, in our particular subset, Viper programs cannot

quantify over values and cannot express background axiomatisations,

both of which Boogie supports. However, both of these are supported by

Viper features outside of our subset.

3.2.2. Viper Example

To make the Viper language more concrete, consider the Viper program

shown in Figure 3.2. This program has two field declarations and two

Viper methods. The method sum adds the sum of all integers between i

and y.g to x.f and is implemented recursively to deal with this statically

unbounded range. The method main first inhales full permission to x.f

and y.g. Then, main stores appropriate values in x.f and y.g, and then

108 3. Formally Validating Translations into an Intermediate Verification Language

calls sum with the goal of storing the sum of the first 100 integers into

x.f. The two inhale statements justify writing to x.f and y.g. The final

assert statement checks whether x.f indeed stores this sum (which is

given by 5050).

This Viper program in Figure 3.2 is correct, which intuitively means that

there is no failing Viper method execution (for instance, the assert state-

ment in main does not fail). We will make the notion of correctness precise

after introducing our operational semantics for Viper programs, and will

then explain why this program is indeed correct in Subsection 3.2.7.

3.2.3. Operational Semantics: Values and State Model

We formalise Viper values using the following Isabelle algebraic data

type vprval:

vprval ≜ VIntVal(intisa) | VBoolVal(boolisa) |
VRefVal(ref) | VPermVal(realisa)

ref ≜ Null | Address(natisa)

There are four kinds of values: integers, Booleans, references, and per-

mission amounts. Integer and Boolean values are embedded via their

Isabelle counterparts (e.g. intisa denotes the Isabelle integer type). Per-

mission amounts are embedded via the Isabelle type for reals.
6

6: One reason why Viper uses reals for

permission amounts instead of the more

traditional rationals is that SMT solvers

have built-in support for reals but usually

not for rationals.
Finally,

references are are modelled via another Isabelle algebraic data type ref
shown above. References are either null or an address whose identifier is

given by a natural number.
7

7: Addresses should be represented by

a type with infinitely many values, since

there is no single finite bound feasible

for every Viper program. There is no

fundamental reason for choosing natural

numbers; our generated certificates do

not rely on the underlying type used for

the addresses.

Viper programs can be understood in terms of the sets of possible execu-

tions through each Viper method body. Analogously to our formalisation

of Boogie in Chapter 2, we distinguish three possible outcomes for finite

Viper executions: failure if the execution fails, magic if the execution stops

(i. e. goes to magic), and a normal outcome if the execution succeeds (i. e.
terminates normally) and transitions to a state because neither of the

other two cases occur. The three outcomes are represented formally by

the following algebraic data type:

outcome𝑣 ≜ F | M | N(state𝑣)

where (1) F denotes a failure outcome, (2) M denotes a magic outcome,
and (3) N(𝜎𝑣) denotes a normal outcome, where 𝜎𝑣 is the resulting Viper

state (state𝑣 is the corresponding type representing such states). A Viper

state 𝜎𝑣 is a triple (st, ℎ, 𝑚), where st is a store (a partial mapping from

variables to values), ℎ is a heap (a total mapping from heap locations to

values), and 𝑚 is a permission mask (a total mapping from heap locations

to nonnegative permission amounts). We use projection functions to map

a state 𝜎𝑣 to its three components: ST(𝜎𝑣) for the store, H(𝜎𝑣) for the heap,

Π(𝜎𝑣) for the permission mask.

Implicit dynamic frames can be expressed with heaps represented by

total mappings or partial mappings. The motivation for choosing a total

mapping for our semantics is because the Viper-to-Boogie implementation

encodes the heap in Boogie via a total mapping (moreover, a total mapping

3.2. A Formal Semantics for Viper 109

is a common choice for implicit dynamic frames formalisations). We

elaborate on this choice in Subsection 3.2.8.

Determining the outcome of a Viper execution is more involved than

for a Boogie execution. In Boogie, the failure and magic outcomes are

reached only if a Boolean expression of an assume or assert command

evaluates to false. In Viper, these outcomes are reached in many more

cases, as we will see. For instance, a failure outcome is reached when

a Viper expression is ill-defined or there is insufficient permission to

write to a heap location, and a magic outcome is reached whenever an

inhale would lead to an inconsistent state. A Viper state is consistent if its

permission mask is consistent, i. e. maps each location to values between

0 and 1. This ensures, for instance, that inhaling acc(x.f, write) &&

acc(y.f, write) goes to magic if x and y evaluate to the same reference,

which correctly captures the separating conjunction.

3.2.4. Operational Semantics: Expression Evaluation

Formalising expression evaluation requires care in Viper for two reasons.

First, in a given state, not even all type-correct expressions are well-
defined: in our subset this can be either because of (1) division by zero,

or (2) dereferencing a heap location for which no permission is held

(subsuming null dereferences). In our semantics, evaluating an ill-defined

expression causes execution to fail (in contrast to Boogie, where expression

evaluation cannot fail).
8

Second, when evaluating expressions as part of 8: Boogie also has division, but defines

division by 0 to be some fixed but un-

specified value.

an exhale operation, one must check whether sufficient permission is

held in a potentially different state than the state in which the expression

is evaluated. As a result, our expression evaluation judgement depends

on two states. As we will make clear in Subsection 3.2.5, our semantics

requires this differentiation because of the potential combination of

exhale and permission introspection. The two states are always the same

whenever expressions are evaluated which are not part of an exhale

operation.

Our expression evaluation judgement 𝜎0

𝑣 ⊢ ⟨𝑒 , 𝜎𝑣⟩ ⇓v 𝑟𝑣 expresses that

expression 𝑒 evaluates to the result 𝑟𝑣 in state 𝜎𝑣 where the permission

checks are performed in state 𝜎0

𝑣 . We call 𝜎𝑣 the evaluation state and 𝜎0

𝑣 the

permission definedness state, since the latter is used only to check whether

there is sufficient permission. 𝑟𝑣 is either a normal result V(𝑣) where 𝑣 is

a Viper value or it is a failure result . In the former case, the expression

is well-defined (and evaluates to value 𝑣) and in the latter case it is not.

We lift the judgement for a single expression to a list of expressions es,
which yields the judgement 𝜎0

𝑣 ⊢ ⟨es, 𝜎𝑣⟩ [⇓]v 𝑟𝑣 , where 𝑟𝑣 is V(vs) and

vs is the list of values to which es evaluate to or 𝑟𝑣 is if an expression in

es is ill-defined.

The expression evaluation judgements for a single expression and a list of

expressions are defined in a mutually-inductive way. A selection of rules

of the inductive definition is shown in Figure 3.3. The full formalisation

is available online [103]. As the rules field and field-null show, a field [103]: Parthasarathy (2024), Viper Seman-
tics and Certificate Metatheory Formalisa-
tion

access fails if there is no permission to the corresponding heap location

in the permission definedness state or the receiver evaluates to null. If

there is permission, then the heap value is looked up in the evaluation

state.

110 3. Formally Validating Translations into an Intermediate Verification Language

𝜎0

𝑣 ⊢ ⟨𝑒 , 𝜎𝑣⟩ ⇓v V(Address(𝑎))

𝑟𝑣 =

if Π(𝜎0

𝑣)(𝑎, 𝑓) > 0

then V(H(𝜎𝑣)(𝑎, 𝑓))
else (field)

𝜎0

𝑣 ⊢ ⟨𝑒. 𝑓 , 𝜎𝑣⟩ ⇓v 𝑟𝑣

𝜎0

𝑣 ⊢ ⟨𝑒 , 𝜎𝑣⟩ ⇓v V(VRefVal(Null))
(field-null)

𝜎0

𝑣 ⊢ ⟨𝑒. 𝑓 , 𝜎𝑣⟩ ⇓v

𝜎0

𝑣 ⊢ ⟨𝑒 , 𝜎𝑣⟩ ⇓v V(VRefVal(Address(𝑎)))
(perm)

𝜎0

𝑣 ⊢ ⟨perm(𝑒. 𝑓), 𝜎𝑣⟩ ⇓v V(VPermVal(Π(𝜎𝑣)(𝑎, 𝑓)))

𝜎0

𝑣 ⊢ ⟨𝑒 , 𝜎𝑣⟩ ⇓v V(VRefVal(Null))
(perm-null)

𝜎0

𝑣 ⊢ ⟨perm(𝑒. 𝑓), 𝜎𝑣⟩ ⇓v V(VPermVal(0))

𝜎0

𝑣 ⊢ ⟨𝑒1 , 𝜎𝑣⟩ ⇓v V(𝑣1)
binopLazyEval(𝑣1 , bop) = Some(𝑣′) (bop-lazy)

𝜎0

𝑣 ⊢ ⟨𝑒1 bop 𝑒2 , 𝜎𝑣⟩ ⇓v V(𝑣′)

𝜎0

𝑣 ⊢ ⟨𝑒1 , 𝜎𝑣⟩ ⇓v V(𝑣1)
binopLazyEval(𝑣1 , bop) = None

𝜎0

𝑣 ⊢ ⟨𝑒2 , 𝜎𝑣⟩ ⇓v V(𝑣2)
𝑣1 bop 𝑣2 = Some(𝑟𝑣) (bop-eager)

𝜎0

𝑣 ⊢ ⟨𝑒1 bop 𝑒2 , 𝜎𝑣⟩ ⇓v 𝑟𝑣

𝜎0

𝑣 ⊢ ⟨𝑒1 , 𝜎𝑣⟩ ⇓v V(𝑣1)
binopLazyEval(𝑣1 , bop) = None

𝜎0

𝑣 ⊢ ⟨𝑒2 , 𝜎𝑣⟩ ⇓v
∃𝑣2 , 𝑟𝑣 . 𝑣1 bop 𝑣2 = Some(𝑟𝑣) (bop-eager-fail)

𝜎0

𝑣 ⊢ ⟨𝑒1 bop 𝑒2 , 𝜎𝑣⟩ ⇓v

es = defineSubExprsE(𝑒) es ≠ []
𝜎0

𝑣 ⊢ ⟨es, 𝜎𝑣⟩ [⇓]v (exp-subexp-fail)
𝜎0

𝑣 ⊢ ⟨𝑒 , 𝜎𝑣⟩ ⇓v

(exps-nil)
𝜎0

𝑣 ⊢ ⟨[], 𝜎𝑣⟩ [⇓]v V([])
𝜎0

𝑣 ⊢ ⟨𝑒 , 𝜎𝑣⟩ ⇓v
(exps-f)

𝜎0

𝑣 ⊢ ⟨𝑒 :: es, 𝜎𝑣⟩ [⇓]v

𝜎0

𝑣 ⊢ ⟨𝑒 , 𝜎𝑣⟩ ⇓v V(𝑣)
𝜎0

𝑣 ⊢ ⟨es, 𝜎𝑣⟩ [⇓]v 𝑟𝑣
(𝑟𝑣 = ∧ 𝑟′𝑣 =) ∨ (∃vs′. 𝑟𝑣 = V(vs′) ∧ 𝑟′𝑣 = V(𝑣 :: vs′)) (exps-cons)

𝜎0

𝑣 ⊢ ⟨𝑒 :: es, 𝜎𝑣⟩ [⇓]v 𝑟′𝑣

Figure 3.3: Selected rules for the definition of expression evaluation judgements for a single expression and an

expression list. The term [] denotes the empty list and the term 𝑒 :: es denotes the list obtained by prepending

𝑒 to the list es. The term bop denotes the semantic interpretation of a binary operation bop if the operation is

well-typed and well-defined for the given arguments (i. e. in this case, returning Some(V(𝑣)) where 𝑣 is the

resulting value). Moreover, bop returns Some() if the operation is well-typed but ill-defined (i. e. division or

modulo by 0) and returns None if the operation is not well-typed for the given arguments. defineSubExprsStmt
and binopLazyEval are defined in Figure 3.4.

The rule exp-subexp-fail catches the case when a definedness subexpression
of expression 𝑒, given by defineSubExprsE(𝑒) in Figure 3.3, is ill-defined,

which results in 𝑒 being ill-defined. The main purpose of defining the

notion of a definedness subexpression is to express the exp-subexp-fail

3.2. A Formal Semantics for Viper 111

defineSubExprsE(𝑒) ≜ case 𝑒 of
uop(𝑒) ⇒ [𝑒]
| 𝑒1 bop 𝑒2 ⇒ [𝑒1]
| 𝑒. 𝑓 ⇒ [𝑒]
| 𝑒1 ? 𝑒2 : 𝑒3 ⇒ [𝑒1]
| perm(𝑒. 𝑓) ⇒ [𝑒]
| _ ⇒ []

binopLazyEval(𝑣1 , bop) ≜ case (𝑣1 , bop) of
| (VBoolVal(true), ||) ⇒ Some(VBoolVal(true))
| (VBoolVal(false), &&) ⇒ Some(VBoolVal(false))
| (VBoolVal(false),⇒) ⇒ Some(VBoolVal(true))
| _ ⇒ None

Figure 3.4: Auxiliary definitions for the expression evaluation judgement. Note that defineSubExprsE(𝑒)
returns a list of expressions, even though in our subset the returned list has at most one element. This choice

is motivated by our goal of making our work extensible to larger Viper subsets. For expressions outside our

subset, the returned list would have more elements. Thus, our definition here can be expanded naturally to

those.

rule, which catches in a single rule the cases when an expression 𝑒 fails due

to failure of a subexpression of 𝑒, instead of having to define a separate

rule for different kinds of expressions. For example, the receiver of 𝑒 is

a definedness subexpression of the field access 𝑒. 𝑓 , because if 𝑒 fails to

evaluate, then so does 𝑒. 𝑓 . Note that 𝑒2 is not considered a definedness

subexpression of 𝑒1 bop 𝑒2. The reason is that the evaluation of certain

binary operations in Viper is lazy, and as a result, the binary operation is

well-defined in certain cases even if 𝑒2 is ill-defined. For instance, 𝑒1 ⇒ 𝑒2

evaluates to true if 𝑒1 evaluates to false even if 𝑒2 is not well-defined. As

a result, for binary operations there is a separate rule bop-eager-fail for

dealing with the case when 𝑒2 is ill-defined. bop-eager-fail makes sure

that the binary evaluation is eager (i. e. binopLazyEval(𝑣1 , bop) = None).

Note that in bop-eager-fail, the reduction is defined only if the first

operand evaluates to a value 𝑣1 whose type is compatible with the

binary operation bop (i. e. ∃𝑣2 , 𝑟𝑣 . 𝑣1 bop 𝑣2 = Some(𝑟𝑣)). For instance,

if 𝑣1 were an integer value, then the rule would not apply for Boolean

binary operations. This choice does not affect well-typed programs.

The motivation for this choice is to simplify the generated certificates,

since this choice reduces the amount of well-typedness proofs required

in a certificate for concrete expressions in the corresponding Boogie

program.

The rules bop-lazy and bop-eager capture the evaluation of binary op-

erations when the two operands are well-defined. bop-lazy captures

the case when a binary operation is evaluated lazily (i. e. the evalua-

tion is determined by the first operand, thus short-circuiting the eval-

uation). A binary operation bop is evaluated lazily to value 𝑣′ iff the

first operand evaluates to 𝑣1 and binopLazyEval(𝑣1 , bop) = Some(𝑣′). bop-

eager captures the case when a binary operation is evaluated eagerly.

Note that bop-eager ensures that division by 0 results in failure (e.g.
VIntVal(𝑖) /Int VIntVal(0) = Some() for all integers 𝑖).

Finally, consider the rules perm and perm-null that model the evalua-

tion of permission introspection perm(𝑒. 𝑓). perm(𝑒. 𝑓) evaluates to the

112 3. Formally Validating Translations into an Intermediate Verification Language

permission of the corresponding heap location in the evaluation state.
Contrary to field accesses, permission introspection is not ill-defined if

the receiver evaluates to null. In particular, if the receiver evaluates to null,

then permission introspection evaluates to 0. Note that this semantics of

perm(null.f) may be somewhat unintuitive compared to the semantics

of field accesses, which requires the receiver to be non-null. We chose

to evaluate perm(null.f) to 0, because this is how the Viper verifier

implementation treats this case. Adjusting the semantics and the verifier

implementation to require the receiver to be non-null would also be an

option.

3.2.5. Operational Semantics: Statement Reduction

We give a big-step operational semantics to Viper statements. The judge-

ment Γ𝑣 ⊢ ⟨𝑠, 𝜎𝑣⟩ →v 𝑟𝑣 holds if in the Viper context Γ𝑣 the execution of

statement 𝑠 in the state 𝜎𝑣 terminates with outcome 𝑟𝑣 . A Viper context

Γ𝑣 contains three components: (1) Vars(Γ𝑣): a partial mapping from the

in-scope variable names to their declared types, (2) Fields(Γ𝑣): a partial

mapping from field names in the program to their declared types, (3)

Methods(Γ𝑣): a partial mapping from method names in the program

to their declared method signatures. The in-scope variable mapping

changes in the execution reduction within the body of a scoped variable

statement, while the other two mappings always remain the same during

the execution reduction.

The judgement is defined inductively via the rules shown in Figure 3.5.

As in the Boogie semantics, the rules ensure that well-typed states remain

well-typed. For instance, the rules field-succ and assign for the field and

variable assignments do not reduce if the to-be-assigned value reduces

to a value that does not match the corresponding declared type of the

field or variable. This choice has no effect on well-typed programs.
9

9: To gain confidence that these extra

conditions do not rule out desired exe-

cutions, one could prove a separate type

soundness result. We have not proved

such a result, but doing so would be

straightforward.

Rule field-succ additionally reflects that full permission is required

to write to a heap location, otherwise the field assignment fails (the

failure case is captured by rule field-fail). Analogously to the expression

evaluation formalisation, there is a single rule that captures the failure

case when a definedness subexpression of a statement is ill-defined

(rule stmt-subexp-fail).

Inhale and exhale

The most interesting statements are the inhale and exhale primitives.

Recall that (1) inhale 𝐴 adds the permissions specified by assertion 𝐴

to the state and assumes the logical constraints in 𝐴, and (2) exhale 𝐴

removes the permissions specified by 𝐴, and fails if a constraint in 𝐴

does not hold. We define their semantics via separate judgements, which

we will discuss below in more detail. First, we will discuss two high-level

decisions for the semantics: (1) our semantics of inhale 𝐴 leaves the heap

unchanged, while exhale 𝐴 causes the loss of heap information for those

heap locations for which the exhale removes all available permission,

and (2) our semantics of inhale 𝐴 and exhale 𝐴 are both expressed

operationally by decomposing the assertion 𝐴 from left to right. Let us

discuss both of these decisions.

3.2. A Formal Semantics for Viper 113

𝜎𝑣 ⊢ ⟨𝑒𝑟 , 𝜎𝑣⟩ ⇓v V(VRefVal(Address(𝑎)))
𝜎𝑣 ⊢ ⟨𝑒 , 𝜎𝑣⟩ ⇓v V(𝑣)
Π(𝜎𝑣)(𝑎, 𝑓) = 1

Fields(Γ𝑣)(𝑓) = typVpr(𝑣)
𝜎′
𝑣 = (ST(𝜎𝑣),H(𝜎𝑣)((𝑎, 𝑓) ↦→ 𝑣),Π(𝜎𝑣)) (field-succ)

Γ𝑣 ⊢ ⟨𝑒𝑟 . 𝑓 := 𝑒 , 𝜎𝑣⟩ →v N(𝜎′
𝑣)

𝜎𝑣 ⊢ ⟨𝑒𝑟 , 𝜎𝑣⟩ ⇓v V(VRefVal(𝑟))
𝜎𝑣 ⊢ ⟨𝑒 , 𝜎𝑣⟩ ⇓v V(𝑣)

𝑟 = Null ∨ (∃𝑎. 𝑟 = Address(𝑎) ∧Π(𝜎𝑣)(𝑎, 𝑓) < 1) (field-fail)
Γ𝑣 ⊢ ⟨𝑒𝑟 . 𝑓 := 𝑒 , 𝜎𝑣⟩ →v F

𝜎𝑣 ⊢ ⟨𝑒 , 𝜎𝑣⟩ ⇓v V(𝑣)
Vars(Γ𝑣)(𝑥) = typVpr(𝑣)

𝜎′
𝑣 = (ST(𝜎𝑣)(𝑥 ↦→ 𝑣),H(𝜎𝑣),Π(𝜎𝑣)) (assign)

Γ𝑣 ⊢ ⟨𝑥 := 𝑒 , 𝜎𝑣⟩ →v N(𝜎′
𝑣)

⟨𝐴, 𝜎𝑣⟩ →inh 𝑟𝑣
(inh)

Γ𝑣 ⊢ ⟨inhale 𝐴, 𝜎𝑣⟩ →v 𝑟𝑣

𝜎𝑣 ⊢ ⟨𝐴, 𝜎𝑣⟩ →rc N(𝜎′
𝑣)

nonDet(𝜎𝑣 , 𝜎′
𝑣 , 𝜎

′′
𝑣) (exh-succ)

Γ𝑣 ⊢ ⟨exhale 𝐴, 𝜎𝑣⟩ →v N(𝜎′′
𝑣)

𝜎𝑣 ⊢ ⟨𝐴, 𝜎𝑣⟩ →rc F
(exh-fail)

Γ𝑣 ⊢ ⟨exhale 𝐴, 𝜎𝑣⟩ →v F

𝜎𝑣 ⊢ ⟨𝐴, 𝜎𝑣⟩ →rc N(𝜎′
𝑣) (assert-succ)

Γ𝑣 ⊢ ⟨assert 𝐴, 𝜎𝑣⟩ →v N(𝜎𝑣)
𝜎𝑣 ⊢ ⟨𝐴, 𝜎𝑣⟩ →rc F

(assert-fail)
Γ𝑣 ⊢ ⟨assert 𝐴, 𝜎𝑣⟩ →v F

Γ𝑣 ⊢ ⟨𝑠1 , 𝜎𝑣⟩ →v N(𝜎′
𝑣)

Γ𝑣 ⊢ ⟨𝑠2 , 𝜎′
𝑣⟩ →v 𝑟𝑣 (seq-n)

Γ𝑣 ⊢ ⟨𝑠1; 𝑠2 , 𝜎𝑣⟩ →v 𝑟𝑣

Γ𝑣 ⊢ ⟨𝑠1 , 𝜎𝑣⟩ →v 𝑟𝑣 𝑟𝑣 = M ∨ 𝑟𝑣 = F
(seq-fm)

Γ𝑣 ⊢ ⟨𝑠1; 𝑠2 , 𝜎𝑣⟩ →v 𝑟𝑣

𝜎𝑣 ⊢ ⟨𝑒 , 𝜎𝑣⟩ ⇓v V(VBoolVal(true))
Γ𝑣 ⊢ ⟨𝑠1 , 𝜎𝑣⟩ →v 𝑟𝑣 (if-thn)

Γ𝑣 ⊢ ⟨if (𝑒) {𝑠1} else {𝑠2}, 𝜎𝑣⟩ →v 𝑟𝑣

𝜎𝑣 ⊢ ⟨𝑒 , 𝜎𝑣⟩ ⇓v V(VBoolVal(false))
Γ𝑣 ⊢ ⟨𝑠2 , 𝜎𝑣⟩ →v 𝑟𝑣 (if-els)

Γ𝑣 ⊢ ⟨if (𝑒) {𝑠1} else {𝑠2}, 𝜎𝑣⟩ →v 𝑟𝑣

typVpr(𝑣) = 𝜏
UpdVars(Γ𝑣 , 𝑥, 𝜏) ⊢ ⟨𝑠, 𝜎𝑣(𝑥 ↦→ 𝑣)⟩ →v 𝑟′𝑣

(𝑟′𝑣 ∈ {F,M} ⇒ 𝑟′′𝑣 = 𝑟′𝑣) ∧ ∀𝜎′
𝑣 . 𝑟

′
𝑣 = N(𝜎′

𝑣) ⇒ 𝑟′′𝑣 = N(𝜎′
𝑣(𝑥 ↦→ 𝜎𝑣(𝑥))) (scope)

Γ𝑣 ⊢ ⟨var 𝑥 : 𝜏 ; 𝑠, 𝜎𝑣⟩ →v 𝑟′′𝑣

Methods(Γ𝑣)(𝑚) = mdecl
𝜎𝑣 ⊢ ⟨es, 𝜎𝑣⟩ [⇓]v vs map(𝜆𝑣. typVpr(𝑣), vs) = argTypes(mdecl)

map(𝜆𝑧.Vars(Γ𝑣)(𝑧), zs) = retTypes(mdecl) map(𝜆𝑣. typVpr(𝑣), vs′) = retTypes(mdecl)
Γ𝑣 ⊢ ⟨exhale pre(mdecl), (xs [↦→] vs,H(𝜎𝑣),Π(𝜎𝑣))⟩ →v 𝑟

pre
𝑣

𝑟
pre
𝑣 ∈ {F,M} =⇒ 𝑟𝑣 = 𝑟

pre
𝑣

∀𝜎pre
𝑣 .

©«
𝑟

pre
𝑣 = N(𝜎pre

𝑣) =⇒
Γ𝑣 ⊢ ⟨inhale post(mdecl), (xs@ys [↦→] vs@vs′,H(𝜎pre

𝑣),Π(𝜎pre
𝑣))⟩ →v 𝑟

post
𝑣 ∧

𝑟𝑣 = resetStoreAfterCall(ST(𝜎𝑣), zs, vs′, 𝑟post
𝑣)

ª®¬ (stmt-mcall)
Γ𝑣 ⊢ ⟨zs := 𝑚(es), 𝜎𝑣⟩ →v 𝑟𝑣

es = defineSubExprsStmt(𝑠) es ≠ []
𝜎𝑣 ⊢ ⟨es, 𝜎𝑣⟩ [⇓]v (stmt-subexp-fail)
Γ𝑣 ⊢ ⟨𝑠, 𝜎𝑣⟩ →v F

Figure 3.5: Viper statement reduction rules. In stmt-mcall, xs and ys denote the formal arguments and target

variables of 𝑚. The term xs [↦→] vs maps the 𝑖-th variable in the list xs to the 𝑖-th value in the list vs. The term

xs@ys appends list ys to list xs. nonDet, defineSubExprsStmt, and resetStoreAfterCall are defined in Figure 3.6.

114 3. Formally Validating Translations into an Intermediate Verification Language

nonDet(𝜎𝑣 , 𝜎′
𝑣 , 𝜎

′′
𝑣) ≜ ST(𝜎′′

𝑣) = ST(𝜎′
𝑣) ∧ 𝜋(𝜎′′

𝑣) = 𝜋(𝜎′
𝑣) ∧

∀𝑙. (𝜋(𝜎𝑣)(𝑙) = 0 ∨ 𝜋(𝜎′
𝑣)(𝑙) > 0) ⇒ ℎ(𝜎′′

𝑣)(𝑙) = ℎ(𝜎′
𝑣)(𝑙)

defineSubExprsStmt(𝑠) ≜ case 𝑠 of
𝑥 := 𝑒 ⇒ [𝑒]
| 𝑒𝑟 . 𝑓 := 𝑒 ⇒ [𝑒𝑟 , 𝑒]
| zs := 𝑚(es) ⇒ es
| 𝑚(es) ⇒ es
| if (𝑒) {𝑠1} else {𝑠2} ⇒ [𝑒]
| _ ⇒ []

defineSubExprsA(𝐴) ≜ case 𝐴 of
𝑒 ⇒ [𝑒]
| acc(𝑒. 𝑓 , 𝑒𝑝) ⇒ [𝑒 , 𝑒𝑝]
| 𝑒 ⇒ 𝐴 ⇒ [𝑒]
| 𝑒 ? 𝐴 : 𝐵 ⇒ [𝑒]
| _ ⇒ []

resetStoreAfterCall(st, zs, vs′, 𝑟𝑣) ≜ case 𝑟𝑣 of
F ⇒ F
| M ⇒ M
| N(𝜎𝑣) ⇒ N((st(zs[↦→]vs′),H(𝜎𝑣),Π(𝜎𝑣)))

Figure 3.6: Auxiliary definitions for the semantics. The term st(zs[↦→]vs′) denotes the store st except for

variables zs, which are mapped to values vs′ (𝑖-th variable in zs is mapped to 𝑖-th variable in vs′).

Recall that, in our semantics, the heap in a Viper state is a total mapping

from heap locations to values. It is crucial that whenever an inhale

obtains permission to a heap location x.f for which there was no per-

mission before, then the semantics takes every possible value for x.f

into account. Our semantics achieves this by considering every possible

heap at the beginning of a program execution, and nondeterministically

choosing values for those heap locations for which an exhale removes all

available permission. This choice precisely reflects the Viper semantics

and is motivated by the existing Viper-to-Boogie implementation, which

uses the same high-level approach in the Boogie encoding. We discuss

this design choice in Subsection 3.2.8.

The decomposition of the assertion from left to right directly reflects how

Viper treats permission introspection in separating conjunctions. This

shows another instance of the impact permission introspection has on

the formalisation, and thus motivates including permission introspection

in our semantics in order to make our certification work extensible to

larger Viper subsets. For instance, executing inhale acc(x.f, write

) && perm(x.f) == none in a state without any permissions always

goes to magic (perm(x.f) == none evaluates to false), because permis-

sion introspection in the right conjunct, within an inhale, refers to the

permission after inhaling the left conjunct. Similarly, exhale acc(x.f,

write) && perm(x.f) == none succeeds in a state with full permission

to x.f (perm(x.f) == none evaluates to true), because permission intro-

spection in the right conjunct, within an exhale, refers to the permission

after removing the permission to the left conjunct.

Formalising this decomposition is straightforward for inhale. We express

the semantics of inhale 𝐴 && 𝐵 as the execution of inhale 𝐴 followed by

inhale 𝐵. In addition to handling permission introspection as expected,

3.2. A Formal Semantics for Viper 115

𝜎𝑣 ⊢ ⟨𝑒 , 𝜎𝑣⟩ ⇓v VBoolVal(𝑏)
𝑟𝑣 = if 𝑏 then N(𝜎𝑣) else M (inh-exp)

⟨𝑒 , 𝜎𝑣⟩ →inh 𝑟𝑣

es = defineSubExprsA(𝐴) es ≠ []
𝜎𝑣 ⊢ ⟨es, 𝜎𝑣⟩ [⇓]v (inh-subexp-fail)
⟨𝐴, 𝜎𝑣⟩ →inh F

⟨𝐴, 𝜎𝑣⟩ →inh N(𝜎′
𝑣)

⟨𝐵, 𝜎′
𝑣⟩ →inh 𝑟𝑣 (inh-sep-n)

⟨𝐴 && 𝐵, 𝜎𝑣⟩ →inh 𝑟𝑣

⟨𝐴, 𝜎𝑣⟩ →inh 𝑟𝑣
𝑟𝑣 ∈ {F,M} (inh-sep-fm)

⟨𝐴 && 𝐵, 𝜎𝑣⟩ →inh 𝑟𝑣

𝜎𝑣 ⊢ ⟨𝑒 , 𝜎𝑣⟩ ⇓v V(𝑟) 𝜎𝑣 ⊢ ⟨𝑒𝑝 , 𝜎𝑣⟩ ⇓v V(𝑝)
𝑝 < 0 ⇒ 𝑟𝑣 = F

𝑝 ≥ 0 ⇒ 𝑟𝑣 = if inhSucc(r, p) then N(𝜎′
𝑣) else M

𝜎′
𝑣 = addperm(𝜎𝑣 , 𝑟 , 𝑓 , 𝑝) (inh-acc)

⟨acc(𝑒. 𝑓 , 𝑒𝑝), 𝜎𝑣⟩ →inh 𝑟𝑣

inhSucc(𝑟, 𝑝) ≜ (𝑝 > 0 ⇒ 𝑟 ≠ null) ∧ (𝑟 ≠ null ⇒ 𝑝 +Π(𝜎𝑣)(𝑟, 𝑓) ≤ 1)

Figure 3.7: Selected rules for the formal semantics of inhale. addperm(𝜎𝑣 , 𝑟 , 𝑓 , 𝑝) denotes the state 𝜎𝑣 where

permission 𝑝 has been added to (𝑟, 𝑓). defineSubExprsA(𝐴) is defined in Figure 3.6.

this semantics also correctly captures the evaluation of field accesses in

assertions. For instance, when executing inhale acc(x.f, write) &&

x.f > 0, the field access x.f in the second conjunct is evaluated in the

state after inhaling full permission to x.f. This is the expected semantics:

in the example, the evaluation of x.f is always well-defined.

Formalising the decomposition for exhale 𝐴 is more complex. The reason

is that, contrary to inhale, field accesses in 𝐴 must be evaluated in the

state before the exhale. For instance, in exhale acc(x.f, write) && x

.f > 0, x.f in the second conjunct must be evaluated in the state before

the exhale. Evaluating x.f after executing exhale acc(x.f, write)

would be ill-defined; the heap would store some nondeterministic value

for x.f. Our semantics for exhale 𝐴 handles this by first removing

the permissions and checking the constraints specified in 𝐴 without
changing the heap yet via an intermediate operation remcheck 𝐴; only after

this intermediate operation does our semantics apply nondeterministic

assignments. We then express the semantics of remcheck 𝐴 && 𝐵 by

executing remcheck 𝐴 followed by executing remcheck 𝐵.

The semantics of remcheck must take two different states into account

when evaluating expressions: the state before the exhale, which we

call the permission definedness state, and the state being updated during

the remcheck, which we call the reduction state. This allows a correct

treatment of field accesses and permission introspection: the former state

is used to check whether field accesses are well-defined and the latter

is used for the remaining cases including the evaluation of permission

introspection. The necessity for these two states motivates having two

states in the expression evaluation judgement.

Let us now take closer look at the judgement formalising inhale. The

reduction of inhale 𝐴 for an assertion 𝐴 from state 𝜎𝑣 to outcome

𝑟𝑣 is expressed via the judgement ⟨𝐴, 𝜎𝑣⟩ →inh 𝑟𝑣 (see rule inh in

Figure 3.5 on page 113), which is inductively defined via the rules shown

in Figure 3.7. Our semantics for ⟨𝐴, 𝜎𝑣⟩ →inh 𝑟𝑣 decomposes 𝐴 from left

116 3. Formally Validating Translations into an Intermediate Verification Language

𝜎𝑣 ⊢ ⟨𝑒 , 𝜎𝑣⟩ ⇓v VBoolVal(𝑏)
𝑟𝑣 = if 𝑏 then N(𝜎𝑣) else F (rc-exp)

𝜎0

𝑣 ⊢ ⟨𝑒 , 𝜎𝑣⟩ →rc 𝑟𝑣

𝜎0

𝑣 ⊢ ⟨𝑒 , 𝜎𝑣⟩ ⇓v V(𝑟) 𝜎0

𝑣 ⊢ ⟨𝑒𝑝 , 𝜎𝑣⟩ ⇓v V(𝑝)
𝑟𝑣 = if exhAccSucc(𝑟, 𝑝, 𝜎𝑣) then N(𝜎𝑅

𝑣) else F (rc-acc)
𝜎0

𝑣 ⊢ ⟨acc(𝑒. 𝑓 , 𝑒𝑝), 𝜎𝑣⟩ →rc 𝑟𝑣

𝜎0

𝑣 ⊢ ⟨𝐴, 𝜎𝑣⟩ →rc N(𝜎′
𝑣)

𝜎0

𝑣 ⊢ ⟨𝐵, 𝜎′
𝑣⟩ →rc 𝑟𝑣 (rc-sep-n)

𝜎0

𝑣 ⊢ ⟨𝐴 && 𝐵, 𝜎𝑣⟩ →rc 𝑟𝑣

𝜎0

𝑣 ⊢ ⟨𝐴, 𝜎𝑣⟩ →rc F
(rc-sep-f)

𝜎0

𝑣 ⊢ ⟨𝐴 && 𝐵, 𝜎𝑣⟩ →rc F

𝜎0

𝑣 ⊢ ⟨𝑒 , 𝜎𝑣⟩ ⇓v V(VBoolVal(true))
𝜎0

𝑣 ⊢ ⟨𝐴, 𝜎𝑣⟩ →rc 𝑟𝑣 (rc-impt)
𝜎0

𝑣 ⊢ ⟨𝑒 ⇒ 𝐴, 𝜎𝑣⟩ →rc 𝑟𝑣

𝜎0

𝑣 ⊢ ⟨𝑒 , 𝜎𝑣⟩ ⇓v V(VBoolVal(false))
(rc-impf)

𝜎0

𝑣 ⊢ ⟨𝑒 ⇒ 𝐵, 𝜎𝑣⟩ →rc N(𝜎𝑣)

𝜎0

𝑣 ⊢ ⟨𝑒 , 𝜎𝑣⟩ ⇓v V(VBoolVal(true))
𝜎0

𝑣 ⊢ ⟨𝐴, 𝜎𝑣⟩ →rc 𝑟𝑣 (rc-condt)
𝜎0

𝑣 ⊢ ⟨𝑒 ? 𝐴 : 𝐵, 𝜎𝑣⟩ →rc 𝑟𝑣

𝜎0

𝑣 ⊢ ⟨𝑒 , 𝜎𝑣⟩ ⇓v V(VBoolVal(false))
𝜎0

𝑣 ⊢ ⟨𝐵, 𝜎𝑣⟩ →rc 𝑟𝑣 (rc-condf)
𝜎0

𝑣 ⊢ ⟨𝑒 ? 𝐴 : 𝐵, 𝜎𝑣⟩ →rc 𝑟𝑣

es = defineSubExprsA(𝐴) es ≠ []
𝜎𝑣 ⊢ ⟨es, 𝜎𝑣⟩ [⇓]v (rc-subexp-fail)
𝜎0

𝑣 ⊢ ⟨𝐴, 𝜎𝑣⟩ →rc F

exhAccSucc(𝑟, 𝑝, 𝜎𝑣) ≜ 𝑝 ≥ 0 ∧ (if 𝑟 = null then 𝑝 = 0 else Π(𝜎𝑣)(𝑟, 𝑓) ≥ 𝑝)
𝜎𝑅
𝑣 ≜ rem(𝜎𝑣 , 𝑟 , 𝑓 , 𝑝)

Figure 3.8: The rules for the formal semantics of remcheck. rem(𝜎𝑣 , 𝑟 , 𝑓 , 𝑝) is the state 𝜎𝑣 where permission 𝑝
is removed from (𝑟, 𝑓). defineSubExprsA(𝐴) is defined in Figure 3.6.

to right as shown by the rules inh-sep-n and inh-sep-fm for the separating

conjunction: that is, for an assertion 𝐴 && 𝐵, first 𝐴 is inhaled, and if

this succeeds, then 𝐵 is inhaled, otherwise the outcome is given by the

outcome of inhaling 𝐴.

The inhale accessibility predicate rule inh-acc in Figure 3.7 expresses

that if the added permission is negative then the operation fails. If the

permission is nonnegative, then the operation succeeds if (1) the receiver

is non-null if 𝑝 > 0, and (2) the added permission does not yield an

inconsistent state (i. e. does not result in more than full permission for

heap location (𝑟, 𝑓)). Otherwise, the operation goes to magic (denoted by

outcome M). If the operation succeeds (i. e. results in a normal outcome),

then the new state additionally contains the added permission 𝑝 at heap

location (𝑟, 𝑓).

The inhale expression rule inh-exp in Figure 3.7 reflects that if the

expression does not hold, then the inhale goes to magic, and otherwise

the inhale has no effect. This case is analogous to the semantics for the

assume command in Boogie (except that the Viper expression can be

ill-defined, which results in inhale failing).
10

10: Viper also supports a separate as-

sume primitive. In the case when a

Boolean expression is assumed, the as-

sume primitive has a meaning identical

to inhale. We currently do not model as-

sume primitives with general assertions

(e. g. with accessibility predicates); defin-

ing the corresponding semantics would

be straightforward.

Let us now discuss the judgements formalising exhale. The inference

rule exh-succ in Figure 3.5 on page 113 formalises the behaviour for the

case when exhale 𝐴 succeeds. The big-step judgement 𝜎𝑣 ⊢ ⟨𝐴, 𝜎𝑣⟩ →rc
N(𝜎′

𝑣) defines the successful execution of a remcheck 𝐴 operation from

𝜎𝑣 to 𝜎′
𝑣 (removing the permissions while leaving the heap unchanged).

nonDet specifies the nondeterministic assignment for all heap locations for

3.2. A Formal Semantics for Viper 117

which remcheck 𝐴 removed all permission. The case when remcheck 𝐴

(and thus exhale 𝐴) fails, is captured by the rule exh-fail in Figure 3.5.

The rules formalising remcheck are shown in Figure 3.8. Our semantics

for remcheck 𝐴 decomposes the assertion 𝐴 from left to right analogously

to our semantics for inhale 𝐴. As discussed, the semantics of remcheck

must take two states into account: Our judgement carries both a permission
definedness state (𝜎0

𝑣 in rule rc-sep-n) in which permissions for field accesses

are checked and a reduction state (𝜎𝑣 and 𝜎′
𝑣 in rule rc-sep-n) from which

permissions are removed. For each of the rules defining 𝜎0

𝑣 ⊢ ⟨𝐴, 𝜎𝑣⟩ →rc
𝑟𝑣 (Figure 3.8), if a subexpression 𝑒 of 𝐴 is evaluated in the rule’s premise,

then it is done so using the judgement 𝜎0

𝑣 ⊢ ⟨𝑒 , 𝜎𝑣⟩ ⇓v 𝑟𝑣 . This accurately

reflects the evaluation of field accesses and permission introspection:

field accesses are checked to be well-defined in 𝜎0

𝑣 and permission

introspection looks up the permissions in 𝜎𝑣 .

Note that the permission definedness state and the reduction state differ

at most on the permission mask. So, if 𝑒 has no permission introspection,

then 𝜎0

𝑣 ⊢ ⟨𝑒 , 𝜎𝑣⟩ ⇓v 𝑟𝑣 is equivalent to 𝜎0

𝑣 ⊢ ⟨𝑒 , 𝜎0

𝑣⟩ ⇓v 𝑟𝑣 .
11

Also note that 11: This usage of a single state instead of

two states for the expression evaluation

is precisely what we did in the presen-

tation of the accompanying conference

paper [60], since we did not include per-

mission introspection in the paper.

in every rule in our Viper semantics for constructs other than exhale

(and remcheck), the two states in the expression evaluation judgements

are always the same. This illustrates that the expression evaluation

judgement needs to take two states as parameters only because of the

potential combination of permission introspection and exhale, and thus

shows an instance of the impact permission introspection has on the

formalisation.

Rule rc-acc in Figure 3.8 for remcheck acc(𝑒. 𝑓 , 𝑒𝑝) models removing 𝑒𝑝
permission from heap location 𝑒. 𝑓 . The operation succeeds (expressed by

exhAccSucc(𝑟, 𝑝, 𝜎𝑣)) iff (1) the to-be-removed permission is nonnegative

and, (2) there is sufficient permission. Rule rc-acc is applicable only

if 𝑒 and 𝑒𝑝 are well-defined, otherwise remcheck acc(𝑒. 𝑓 , 𝑒𝑝) fails as

captured by rule rc-subexp-fail.

Rule rc-exp in Figure 3.8 reflects that remcheck 𝑒 fails if the Boolean

expression 𝑒 does not hold, and otherwise has no effect. This behaviour

is identical to the semantics for assert 𝑒 in Viper and analogous to the

assert command in Boogie (the main difference to Boogie is that Boogie

expressions are never ill-defined). As discussed, assert 𝐴 in Viper for a

general assertion 𝐴 differs from exhale 𝐴. Executing assert 𝐴 checks

whether remcheck 𝐴 succeeds, and if it does, then assert 𝐴 results in

a normal outcome whose state is the same as before the execution of

assert 𝐴, and otherwise fails if remcheck 𝐴 fails (see rules assert-succ

and assert-fail in Figure 3.5).

Method calls

Finally, let us consider the semantics of a method call 𝑚(es) to callee 𝑚

(i. e. 𝑚 does not return any results in this case). Intuitively, the semantics

of such a call is to ensure that 𝑚’s precondition holds and to remove the

corresponding permissions before transitioning to a state in which the

postcondition holds and the corresponding permissions are added. If the

precondition does not hold (e.g. the caller does not have the specified

permission), then the call fails. In addition to specifying permissions, the

pre- and postcondition can constrain heap locations (e.g. the postcondition

118 3. Formally Validating Translations into an Intermediate Verification Language

may specify how the method modified a heap location). If the caller has 𝑝

permission to x.f but 𝑚’s precondition specifies less than 𝑝 permission to

x.f (or potentially does not specify any permission to x.f at all), then the

call’s semantics makes sure that the corresponding value of x.f remains

unchanged by the call. In separation logic terminology, in this case, the

heap information and permission to x.f is framed around the call.

The semantics of a method call zs := 𝑚(es), where the call returns results

that are stored in target variables zs, is almost identical to the semantics

when a call does not return any results. The main difference is that the

postcondition may additionally constrain the returned results. So, the

semantics additionally takes into account every possible returned result

that satisfies the postcondition.

The rule stmt-mcall in Figure 3.5 on page 113 formalises the semantics of

method calls. (If the target variables zs in the rule are empty, then one

obtains the semantics of a call that does not return results.) stmt-mcall

expresses the semantics by (1) exhaling the precondition (i. e. ensuring

the precondition holds and removing the specified permissions), (2)

nondeterministically assigning values vs′ of the declared type to the

target variables, and (3) inhaling the postcondition (i. e. transitioning

to a state in which the postcondition holds and adding the specified

permissions). Note that this semantics ensures that if the caller has

permissions to a heap location that are not specified by the precondition,

then the heap values remain the same. This is because in such case the

exhale would not change such a heap location, since there would be

still be permission left to this heap location after the exhale. Moreover,

the semantics ensures that all information is lost on heap locations after

the exhale for which the precondition specifies all the permissions held

by the caller. This models the fact that the call could change those heap

locations, and thus, the caller should obtain the information on those

locations only via the postcondition.

To provide an intuition for the method call semantics, consider the

following method declaration:

method setPositive(x: Ref) returns (z: Int)

requires acc(x.f, write)

ensures acc(x.f, write) && x.f == z && z > 0

The precondition requires full permission to x.f. The postcondition

ensures the same permission and also ensures that x.f evaluates to the

returned value z and that this value is positive. Now, consider a call i :=

setPositive(r). This call should succeed only if there is full permission

to r.f before the call, which is ensured by the initial exhale operation

of the precondition in the call’s semantics. If the exhale succeeds, then

the subsequent nondeterministic assignment to i and the inhale of

the postcondition will ensure that the caller will get back permission

to r.f and after the call r.f stores a positive value given by the value

returned by the call. The successful exhale of the precondition ensures

that all information on r.f is lost (since full permission is exhaled, the

exhale nondeterministically assigns a value to r.f). Otherwise, if r.f

was negative before, the inhale could yield contradicting information

and result in a magic state, which would not accurately capture the call.

3.2. A Formal Semantics for Viper 119

Note that 𝑚’s pre- and postcondition appear in stmt-mcall precisely as

they do in the signature of 𝑚, that is, with the formal arguments xs and the

formal target variables ys. As a result, the rule expresses the exhale and

inhale operations in states whose stores contain only the formal argu-

ments and formal target variables. If the exhale and inhale operations

succeed, then the store is reset to the store before the call and where the

target variables are updated accordingly (via resetStoreAfterCall). If the

operations do not succeed, then the call’s outcome is a failure or magic

outcome (e.g. if either operation fails, then the call fails). Finally, note

that the call reduces only if the actual argument expressions es and the

actual target variables zs respect the types in the callee’s signature, which

keeps states well-typed as in the variable and field assignment rules; this

has no effect on well-typed programs.

Expressing the method call rule via substitution

An alternative approach to expressing the method call rule would

be to consider the callee’s pre- and postcondition where the formal

arguments and formal target variables are substituted by the actual

arguments and actual target variables. One reason why we did not

use this approach is that if the actual arguments have old expressions
(which the Viper subset presented in this dissertation does not include),

then the substitution would not reflect the semantics accurately. In

particular, the old expressions in the actual arguments (referring to

the pre-state of the caller) would be conflated with old expressions

in the declared postcondition (referring to the pre-state of the callee).

One could circumvent this issue, for example, by renaming the old

expressions in the actual arguments to labelled old expressions (also

not included in the subset here) using a fresh label and adjusting the

Viper state accordingly.

3.2.6. Correctness of a Viper Program

A Viper program is correct if each of its methods is correct. The correctness

of a method 𝑚 w.r.t. field declarations 𝐹 and method declarations 𝑀 is

given by the following definition:

Definition 3.2.1 (Correctness of a Viper method)

methodCorrect𝐹,𝑀(𝑚) ≜
∀𝜎𝑣 . [stateWellTyVpr(𝐹, 𝑚, 𝜎𝑣) ∧ (∀𝑙. Π(𝜎𝑣)(𝑙) = 0)] =⇒

let 𝑠𝑣 = inhale pre(𝑚); body(𝑚); exhale post(𝑚) in

∀𝑟𝑣 . initCtxt𝐹,𝑀𝑣 (𝑚) ⊢ ⟨𝑠𝑣 , 𝜎𝑣⟩ →v 𝑟𝑣 =⇒ 𝑟𝑣 ≠ F

where stateWellTyVpr(𝐹, 𝑚, 𝜎𝑣) expresses that 𝜎𝑣 is well-typed (i. e. the store
respects the declarations of formal arguments and target variables in method 𝑚,
and the heap respects the field declarations 𝐹), and initCtxt𝐹,𝑀𝑣 (𝑚) constructs
the initial Viper context.

Intuitively, 𝑚 is correct, if for any initial state that satisfies 𝑚’s precon-

dition, any execution of 𝑚’s body in this state must result in a magic

outcome or in a normal outcome with a state that satisfies 𝑚’s postcondi-

120 3. Formally Validating Translations into an Intermediate Verification Language

tion. In our semantics, we model the satisfaction of assertions via inhale

and exhale. The normal outcomes resulting from inhaling assertion 𝐴

from all well-typed states yields the set of states that satisfy 𝐴. If exhaling

𝐴 from a state cannot fail, then the state satisfies 𝐴. As a result, it is

natural to express the correctness of a Viper method by requiring that

any execution starting in a well-typed state 𝜎𝑣 that inhales the precon-

dition, then executes the body, and finally exhales the postcondition,

cannot fail. For our supported Viper subset, such a definition would

provide the expected results for method bodies that do not use permission

introspection.

Definition 3.2.1 defines the correctness of a Viper method; this definition

also works with permission introspection. The only difference to the

definition that we just described is that Definition 3.2.1 considers only

those executions that inhale the precondition from well-typed states

without any permissions (i. e. (∀𝑙. Π(𝜎𝑣)(𝑙) = 0)). For instance, the following

method is correct in Viper:

method m(x: Ref)

requires acc(x.f, 1/2)

ensures true

{

assert perm(x.f) == 1/2

}

Inhaling acc(x.f, 1/2) in a state without any permission always yields

a state with exactly half permission. As a result, the assert statement in

the method body always succeeds. If one removed the empty permission

restriction, then the assert statement would fail, since executions with

more than half permission would reach the assert statement. This obser-

vation shows another instance of the impact that permission introspection

has on the Viper semantics. In our supported Viper subset, one can prove

that if the method body has no permission introspection, then the empty

permission restriction does not affect the correctness of a method.

Treatment of method calls

Note that Definition 3.2.1 accurately captures the correctness of all possible

Viper methods in our subset, including recursive methods. In particular,

when considering the correctness of a method 𝑚 w.r.t. field declarations

𝐹 and method declarations 𝑀 (denoted by methodCorrect𝐹,𝑀(𝑚)), 𝑀
contains all methods in the corresponding Viper program including 𝑚.

Since our semantics for a call to a method 𝑚 just uses 𝑚’s specification,

there are only finite executions, and the correctness of a method does not

depend on the correctness of any other method. Since Viper is primarily an

intermediate verification language, such a correctness definition is often

sufficient. In particular, executions of a Viper method often do not directly

reflect executions in an input program that is translated to Viper (e.g.,
concurrent input programs are translated into multiple sequential Viper

methods). Instead, when reasoning about such translations from some

input language into Viper, one would show that a modular treatment of

calls via specifications at the Viper level implies a correctness result on

the input program w.r.t. an input language semantics where the bodies of

callees in the input program are executed.

3.2. A Formal Semantics for Viper 121

Nevertheless, there are cases where it is useful to know that an execution

of a method 𝑚 satisfies 𝑚’s specification and where the semantics of

calls executes the callee’s body (for instance, when Viper is not used as

an intermediate verification language). In such a case, one would have

to define an alternative semantics that treats calls differently. One could

then prove that our notion of correctness implies an alternative notion of

correctness that uses such an alternative semantics (potentially under

certain conditions, for example, since permission introspection may lead

to incomparable executions).

If one wanted to also ensure that there are no nonterminating executions,

then one would have to ensure that an alternative semantics is able to

express nontermination using, for example, a small-step semantics or a

coinductive big-step semantics (an inductive big-step semantics as used

in our formalisation cannot express nontermination). In this case, our

correctness definition (Definition 3.2.1) would not imply termination in

general. Instead, one would require some extra condition that, for instance,

expresses a decreasing and terminating measure on method calls. Viper

supports the specification of such measures and Viper verifiers also

prove termination w.r.t. a semantics that executes the bodies of method

calls using such measures; we do not consider such measures in this

dissertation.

3.2.7. Illustrating the Viper Semantics on an Example

We will now discuss at a high level why the Viper program shown in Fig-

ure 3.2 on page 107 is correct, which we introduced in Subsection 3.2.2.

This discussion will give an intuition for our formally introduced Viper

semantics.

To show that this program is correct, we need to show that its methods

main and sum are correct. Let us first see why method main is correct.

Since main’s pre- and postcondition are trivial (i. e. true), main is correct

(Definition 3.2.1) iff main’s body has no failing executions starting from

any well-typed state with no permissions. The first two inhales in main’s

body clearly do not fail, since the corresponding receivers are trivially

well-defined (they are both variables) and the permission amounts

are nonnegative. The inhales lead to a normal outcome and not to a

magic outcome for every considered execution, since heap locations with

different fields are always different. Thus, the resulting permission mask

is always consistent here. The two assignments succeed, because the

two inhales guarantee full permission to both target heap locations. The

semantics of the call to sum first exhales sum’s precondition and then

inhales sum’s postcondition. The exhale succeeds since (1) full permission

to both x.f and y.g is still held, and (2) the logical constraints in sum’s

precondition hold. The inhale also succeeds and ensures that after the

call main still has full permission to both x.f and y.g, and that x.f equals

(y.g * (y.g + 1)) / 2.

The most interesting aspect of main’s correctness is arguing why the

final assert succeeds in every execution that reaches it. The fact that

in every execution that reaches the assert statement x.f equals (y.g

* (y.g + 1)) / 2 is not sufficient on its own to deduce success. We

additionally need that y.g is 100, that is, y.g has the same value as

122 3. Formally Validating Translations into an Intermediate Verification Language

before the call to sum. This is indeed the case, because the precondition of

sum specifies only half permission to y.g. As a result, the exhale of the

precondition leaves the value stored in the heap for y.g unchanged, since

after the exhale there is still half permission left. Therefore, y.g’s value

is indeed 100. In separation logic terminology, the heap information of

y.g is framed around the call, since the call does not require all of the

available permission to y.g.

Let us now see why method sum is correct. The precondition of sum states

that before the call x.f must be equal to the sum of all integers between 1

and i-1 and that i is at most y.g + 1. The postcondition of sum states

that after the call x.f must be equal to the sum of all integers between

1 and y.g. (The specification of sum expresses the sum of all integers

between 1 and 𝑘 using the well-known formula
𝑘∗(𝑘+1)

2
.) Intuitively, this

postcondition must hold given the precondition, since sum adds the sum

of all integers between i and y.g to x.f.

To show that sum is correct, one must show that starting from any

well-typed state with no permissions, inhaling the precondition, then

executing the body, and finally exhaling the postcondition never fails.

The inhale of the precondition succeeds, since for each heap location

evaluated in the precondition, the corresponding permission is inhaled

first. Using similar arguments as for main it is straightforward to see why

executing sum’s body after the inhale never fails. Finally, the exhale of

the postcondition does not fail at the end because of the following. If i

is larger than y.g, then no further statements are executed in the body.

In this case, the precondition specifies all the permissions and logical

constraints specified in the postcondition, since from i <= y.g + 1 we

learn that i is equal to y.g + 1. Thus, the inhale of precondition adds

all the permissions and assumes all constraints required for the exhale to

not fail. If i is at most y.g, then the then-branch of the body is executed.

Here, the postcondition inhaled as part of the call to sumprecisely matches

the postcondition that needs to be exhaled for the correctness. Thus, the

exhale does not fail.

3.2.8. Semantics Design Decisions

The semantics that we have defined in this section accurately reflects

Viper for the supported subset. There are various ways one could have

formalised different parts of the semantics. In this subsection, we discuss

two of our design decisions.

A first design decision is that we use an operational Viper semantics in-

stead of, for example, an axiomatic semantics. There are two motivations

for this design choice. First, an operational Viper semantics simplifies

the formal connection to an operational Boogie semantics of Boogie

programs generated by the existing Viper-to-Boogie translation, which

is the main goal of this chapter. The operational semantics of Viper

statements is described via a sequence of state updates and checks. These

sequences of state updates and checks connect naturally to a simulating

sequence of Boogie state updates and checks. Moreover, our semantics

for inhale 𝐴 and exhale 𝐴 is itself described operationally: both opera-

tions decompose 𝐴 from left to right, updating the state along the way,

which is also how the existing Viper-to-Boogie translation encodes these

3.3. The Existing Viper-to-Boogie Translation 123

statements into Boogie. Second, as we discuss in Subsection 3.2.5 on

page 112, permission introspection requires decomposing the assertion

from left to right for inhale and exhale, which naturally leads to an

operational description of both operations. Since one goal of this chapter

is to provide solutions that are extensible to larger Viper subsets, it was

important to take permission introspection into account. We discuss

a Viper semantics not presented in this dissertation as part of related

work (Section 3.7), where we do not support permission introspection,

and where we instead use an axiomatic semantics, and a more abstract

description of inhale and exhale.

A second design decision is that we use a total mapping for the heap

instead of a partial mapping. This is a common choice for implicit dy-

namic frames, but in our case the main motivation was that the existing

Viper-to-Boogie translation encodes the heap as a total heap in Boogie.

As a result, using a total mapping in the Viper semantics makes the con-

nection to Boogie simpler. Moreover, our semantics nondeterministically

assigns values to heap locations for which all permissions are lost as part

of an exhale. However, when inhaling permission to a heap location

without any permission, the corresponding value is not nondeterministi-

cally assigned. This setup also matches how the existing Viper-to-Boogie

translation encodes exhale and inhale, and thus simplifies the formal

validation. However, this setup is slightly unintuitive, because the prop-

erty one needs is that whenever an inhale operation obtains permission

to a heap location for which there was no permission before, then the

semantics must consider every possible heap value for this location. In

work not presented in this dissertation [45], we formally show that this [45]: Dardinier et al. (2025), Formal Foun-
dations for Translational Separation Logic
Verifiers

property indeed holds by connecting our semantics to a Viper semantics

with partial heaps, where heap values are assigned nondeterministically

when inhaling.

This concludes our presentation of our formal semantics for a subset of

Viper. Our automatically generated certificates establish soundness of

the existing Viper-to-Boogie translation w.r.t. this semantics. We will next

take a closer look at the existing Viper-to-Boogie translation, followed

by a presentation of our general methodology for formally validating

front-end translations (Section 3.4), which we then apply to the existing

Viper-to-Boogie translation (Section 3.5).

3.3. The Existing Viper-to-Boogie Translation

In this section, we present aspects of the existing Viper-to-Boogie trans-

lation relevant for this chapter. First, we provide concrete examples

taken from the existing Viper-to-Boogie translation to showcase the three

challenges that arise when formally validating front-end translations

discussed at a high level in Section 3.1: the semantic gap (Subsection 3.3.1),

diverse translations (Subsection 3.3.2), and non-locality (Subsection 3.3.3).

Next, we provide more details on the non-local check performed by the

existing Viper-to-Boogie translation, including why the check justifies

the corresponding optimisation (Subsection 3.3.4). Then, we discuss

the Boogie features that we additionally formalised to capture Boogie

programs targeted by the existing Viper-to-Boogie translation and which

124 3. Formally Validating Translations into an Intermediate Verification Language

inhale acc(x.f, q)
y.g := x.f+1
exhale acc(x.f, q) && y.g > x.f

{

1 tmp := q;
2 assert tmp >= 0;
3 assume tmp > 0 ==> x != null;
4 M[x,f] += tmp;
5 assume GoodMask(M);
6 assert M[x,f] > 0;
7 assert M[y,g] == 1;
8 H[y,g] := H[x,f]+1;
9 assume GoodMask(M);

10 WM := M;
11 tmp := q;
12 assert tmp >= 0;
13 if(tmp != 0) {
14 assert M[x,f] >= tmp;
15 }
16 M[x,f] -= tmp;
17 assert WM[y,g] > 0;
18 assert WM[x,f] > 0;
19 assert H[y,g] > H[x,f];
20 havoc H’;
21 assume idOnPositive(H,H’,M);
22 H := H’;
23 assume GoodMask(M);

Figure 3.9: A Viper statement (on the left) and the corresponding (simplified) Boogie statement (on the right)

that is emitted by the existing Viper-to-Boogie translation.

were not formalised in Chapter 2 (Subsection 3.3.5). Next, we provide a

high-level overview of the Boogie background declarations generated by

the existing translation and how to express the polymorphic Boogie maps

generated by the existing translation in the Boogie subset formalised

in Chapter 2 using background declarations (Subsection 3.3.6). Finally,

we show how to use Boogie values to capture Boogie type constructors

generated by the existing translation as part of the background declara-

tions (Subsection 3.3.7). That is, we show how to instantiate the carrier

type representing Boogie’s abstract values, which represent inhabitants

of types obtained via the Boogie type constructors; the carrier type is a

parameter of the Boogie value definition formalised in Subsection 2.3.3

on page 27.

3.3.1. Challenge 1: The Semantic Gap

To give a flavour of the large semantic gap between a Viper statement and

the corresponding Boogie translation, consider Figure 3.9, which shows a

concrete Viper statement and the corresponding Boogie statement emitted

by the existing Viper-to-Boogie translation (in simplified form). The Viper

statement first adds permission to x.f via the inhale operation, then

updates y.g, and finally removes the added permission to x.f and checks

that y.g is greater than x.f via the exhale operation. This sequence of

operations can appear in a Viper method body. Moreover, this sequence

of operations essentially describes the correctness of a Viper method

(Definition 3.2.1) with the permission to x.f as precondition, the field

update as method body, and the exhaled assertion as postcondition. As a

3.3. The Existing Viper-to-Boogie Translation 125

result, the existing translation of such a method also translates such a

sequence.

The corresponding Boogie statement is significantly larger. The inhale

is encoded on lines 1-5, the assignment is encoded on lines 6-9, and the

exhale is encoded on lines 10-23. One reason for this large difference in

size is that Boogie has no built-in support for implicit dynamic frames

(IDF) reasoning. In particular, Boogie has no built-in heap or notion of

permissions, and in contrast to Viper, Boogie’s expressions never fail

to evaluate. As a result, the Viper state must be represented explicitly

in Boogie and the well-definedness conditions for expressions must be

encoded explicitly via Boogieassert commands. Moreover, the nontrivial

inhale and exhale operations that operate on IDF assertions must be

encoded into Boogie’s simple basic commands. One consequence is that

the success conditions for these operations must be reflected explicitly via

assert commands. Moreover, conditions guaranteed by these operations

must be reflected explicitly via assume commands.

The Boogie program uses map-typed variables H and M to explicitly

model the Viper heap and permission mask, respectively.
12

Permission 12: We describe in Subsection 3.3.6 how

we represent such maps using the Boogie

subset formalised in Chapter 2.

requirements on the current permission mask are modelled via conditions

on M. For instance, line 6 checks whether there is permission to x.f to

ensure that the expression assigned to y.g is well-defined, and line 7

checks whether there is full permission toy.g as required by the semantics

of a field assignment. Note that M is not always the only variable tracking

permissions. For instance, in the encoding of the remcheck operation

as part of the exhale statement, the auxiliary variable WM captures the

permission mask of the corresponding permission definedness state

(line 10). All heap locations evaluated during the remcheck operation are

checked to have positive permission w.r.t. WM.

The Boogie program uses uninterpreted Boogie functions constrained

via Boogie axioms to model different semantic notions of the Viper

statement. This is another aspect of the semantic gap since these semantic

notions modelled explicitly in the Boogie program via functions and

axioms are implicit in the Viper program. For instance, the uninterpreted

function GoodMask expresses when a permission mask is consistent.

An axiom constrains the function correspondingly; we will show the

axiom in Subsection 3.3.6. As another example, the Boogie program

encodes the nondeterministic assignment of heap values at the end of

the exhale operation using the uninterpreted function idOnPositive

(lines 20-22). In the encoding, a heap H’ is nondeterministically obtained

via havoc H’ and then constrained to match the original heap H on all

locations where there is positive permission (w.r.t. M) via the assume

statement. This constraint is achieved using idOnPositive; we will show

the corresponding axiom in Subsection 3.3.6. Note that this Boogie

encoding overapproximates the nondeterministic assignment specified

by the Viper semantics: assigning new values to all locations without

permission, rather than only those newly without permission.

Even the tiny snippet of Viper code shown in Figure 3.9 illustrates the

explosion in concerns, complexity and the inobvious mapping between

concepts in one language and the other, all of which must be taken care

of in a formal validation approach.

126 3. Formally Validating Translations into an Intermediate Verification Language

aH,aM := H,M;
//remcheck A in aH,aM
...
//continue with H,M

tH,tM := H,M;
//remcheck A in H,M
...
H,M := tH,tM;
//continue with H,M

if(*) {
//remcheck A in H,M
...
assume false;

}
//continue with H,M

Figure 3.10: Three viable translations into Boogie for the Viper statement assert A. The translation on the

left is the one used by the existing Viper-to-Boogie translation if A has accessibility predicates.

3.3.2. Challenge 2: Diverse Translations

Front-end translations implemented in practice use different translations

for the same source language feature depending on the context. The

motivation is to provide more efficient translations that are sound only in

certain cases. This diversity also shows up in the existing Viper-to-Boogie

translation. For instance, the existing translation does not emit any Boogie

code for the nondeterministic heap assignment as part of an exhale if the

exhaled assertion has no accessibility predicates. This is sound, because

in such a case the exhale does not remove any permissions and thus the

nondeterministic heap assignment has no effect.

The existing translation also translates the Viper statement assert 𝐴

differently depending on whether 𝐴 has accessibility predicates. The

Boogie code on the far left in Figure 3.10 shows the structure of the existing

translation if 𝐴 has accessibility predicates. First, the translation assigns

the current heap variable H and permission mask variable M to fresh

variables aH and aM, respectively. Then, the translation of remcheck 𝐴

follows, where the translation uses aH and aM as the Boogie variables

modelling the Viper heap and permission mask, respectively. In particular,

this translation of remcheck 𝐴 does not use the original variables H and M.

Finally, the translation of the next statement after the assert statement

is performed again w.r.t. the original variables H and M. Since the values

stored in H and M are not changed by the translation of remcheck 𝐴, this

reflects the fact that assert 𝐴 has no effect on the current Viper state.

If 𝐴 has no accessibility predicates, then the translation does not use

fresh variables aH and aM. Instead, the translation of remcheck 𝐴 is done

directly with the original variables H and M. This is sound because in this

case remcheck 𝐴 does not make changes to the Viper state, and thus H

and M are not affected by the translation.

There are also examples where the existing translation chooses an alterna-

tive whose soundness is justified by a condition that is in general hard to

check syntactically. In such cases, the translation generates Boogie code

with the purpose of checking this condition. For instance, the existing

translation omits expression well-definedness checks in the translation

of the exhale of a method call precondition and the inhale of a method

call postcondition, because the translation generates separate Boogie

code that checks the well-formedness of the pre- and postcondition. As a

result, if the pre- and postcondition are not well-formed, then the Viper-

to-Boogie implementation reports an error. Well-formedness of a method

specification guarantees that expressions evaluated during exhale and

inhale operations modelling a corresponding method call are always

well-defined. Well-formedness is a semantic condition that cannot easily

3.3. The Existing Viper-to-Boogie Translation 127

method main(x: Ref)
{
m(x)

}

method m(x: Ref)
requires mpre
ensures mpost

{
mbody

}

1 proc bmain(x: bref)
2 {
3 //local var decls elided
4 M := ZeroMask
5 //m(x) start
6 ... /* exhale mpre in H,M
7 (optimised) */
8 ... /* inhale mpost in H,M
9 (optimised) */

10 //m(x) end
11 }

12 proc bm(x: bref)
13 {
14 //local var decls elided
15 M := ZeroMask
16 ... //inhale mpre in H,M
17 if(*) {
18 pM := ZeroMask
19 havoc pH
20 ... //inhale mpost in pH,pM
21 assume false
22 }
23 ... //mbody in H,M
24 ... /* exhale mpost in H,M
25 (optimised) */
26 }

Figure 3.11: The translation of two Viper methods main and m into two Boogie procedures as emitted by

the existing Viper-to-Boogie translation. bmain encodes main and bm encodes m. main has the trivial pre-

and postcondition true. m has the precondition mpre and postcondition mpost. Three dots in the Boogie

procedures indicate an omitted part of the translation for the sake of presentation and the comment next to

the dots indicates (1) the Viper construct that is translated in the corresponding dots and (2) which Boogie

variables are used in this part of the translation to represent the Viper heap and permission mask. The

translation of inhale and exhale is optimised when translating a call (lines 6 and 8) and the translation of

the exhale of a postcondition ensuring that the postcondition is satisfied at the end of a method (line 24).

The Boogie constant ZeroMask represents the permission mask storing zero permissions for all locations; a

Boogie axiom not shown here constrains ZeroMask accordingly. The translation of a Viper method starts by

setting the mask variable M representing the Viper permission mask to ZeroMask since the correctness of a

Viper method is w.r.t. initial states that do not have permissions (Subsection 3.2.6 on page 119).

be checked syntactically in general. We will present the well-formedness

definition and discuss why well-formedness justifies the alternative

translation of exhale and inhale in more detail in Subsection 3.3.4.

The examples discussed so far revolved around alternative translations

depending on conditions that may hold. However, there are also al-

ternative translations, which are sound under the same conditions. A

formal validation approach should be able to deal with as many of these

as possible in case the implementation changes. For instance, when 𝐴

has accessibility predicates, there are various natural translations for

assert 𝐴: the two code examples in the middle and on the far right

of Figure 3.10 show natural alternatives to the one used by the existing

translation. The code in the middle encodes the remcheck operation w.r.t.

the original variables H and M, but then resets those variables at the end to

the values they had initially via auxiliary variables. The code on the right

does not introduce any auxiliary variables at all and instead performs the

translation of remcheck 𝐴 in a separate branch. Each of these translations

would correctly model the semantics of an assert 𝐴 statement, and thus,

a formal validation approach should ideally be able to justify each of

these.

3.3.3. Challenge 3: Non-Locality

So far we have illustrated translations of Viper statements into Boogie

statements. For the illustration of the final challenge, we must consider

128 3. Formally Validating Translations into an Intermediate Verification Language

the translation of multiple Viper methods into corresponding Boogie

procedures. Figure 3.11 shows the existing Viper-to-Boogie translation of

two Viper methods main and m, each of which is translated to a separate

Boogie procedure (main is translated to bmain and m is translated to bm).

A key challenge is formally justifying the translation of main’s method

call m(x) in bmain. At a high level, the translation reflects the semantics of

the call. That is, first the exhale of m’s precondition is translated followed

by the translation of the inhale of m’s postcondition. However, in contrast

to the usual translation of exhale and inhale, the translation for both of

these operations as part of a method call omits the well-definedness checks

for expressions appearing in the pre- and postcondition. For example,

for a postcondition acc(x.f) && y.f > 0, the well-definedness of y.f

would not be checked by the translation. This optimisation must be

justified, because the Viper semantics specifies that exhale and inhale

result in failure if an expression evaluated during the operations is not

well-defined.

The reason this optimised translation is sound is because the translation

of the callee checks that the callee’s specification is well-formed. As we will

explain in Subsection 3.3.4, well-formedness of a specification implies

that expressions evaluated during the corresponding exhale and inhale

operations must be well-defined. This is a typical optimisation performed

by front-end translations used in practice: a condition is checked once

(e.g. the well-formedness of a specification) and as a result the translation

is optimised at various points (e.g. every corresponding method call).

One challenge that such optimisations cause is that to justify the transla-

tion of a call as part of one Boogie procedure, one must take into account

a check performed in a different Boogie procedure. This requires non-local
reasoning, because one cannot justify the Boogie code within each Boogie

procedure locally (i. e. independently from all other procedures). Another

challenge is setting up a formal validation approach that deals uniformly
with the standard exhale (resp. inhale) translation and the optimised

exhale (resp. inhale) translation, instead of having two completely sep-

arate approaches for the standard and optimised translations. A uniform

approach prevents unnecessary duplication and scales to a large variety

of possible optimisations and their combinations.

3.3.4. A Closer Look at the Non-Local Method Call

Optimisation

In the following, we provide more details regarding the method call

optimisation described in Subsection 3.3.3. First, we take a closer look

at what it means for a specification to be well-formed and why well-

formedness justifies the optimised method call translation at a high level.

In later sections, we will make this high-level justification formal. Second,

we discuss how the callee’s translation checks well-formedness of the

callee’s method specification.

The following definition states when a specification for a method 𝑚 is

well-formed w.r.t. field declarations 𝐹:

3.3. The Existing Viper-to-Boogie Translation 129

Definition 3.3.1 (Well-formedness of a method specifcation)

SpecWf𝐹(𝑚) ≜
∀𝜎𝑣 . [stateWellTyVpr(𝐹, 𝑚, 𝜎𝑣) ∧ consistent(𝜎𝑣)] =⇒
∀𝑟𝑣 . ⟨pre(𝑚), 𝜎𝑣⟩ →inh 𝑟𝑣 =⇒ 𝑟𝑣 ≠ F ∧
∀𝜎′

𝑣 . 𝑟𝑣 = N(𝜎′
𝑣) =⇒

∀ℎ, 𝑚. let 𝜎′′
𝑣 = (ST(𝜎𝑣), ℎ, 𝑚) in

[stateWellTyVpr(𝐹, 𝑚, 𝜎′′
𝑣) ∧ consistent(𝜎′′

𝑣)] =⇒
¬(⟨post(𝑚), 𝜎′′

𝑣 ⟩ →inh F)

Well-formedness of the callee’s specification guarantees that for any

consistent and well-typed state 𝜎𝑣 (1) inhaling the callee’s precondi-

tion in 𝜎𝑣 cannot fail (⟨pre(𝑚), 𝜎𝑣⟩ →inh 𝑟𝑣 =⇒ 𝑟𝑣 ≠ F), and (2) if

inhaling the callee’s precondition in 𝜎𝑣 leads to a normal outcome

(𝑟𝑣 = N(𝜎′
𝑣)), then for any consistent and well-typed state 𝜎′′

𝑣 that has

the same store as 𝜎𝑣 , inhaling the callee’s postcondition does not fail in

𝜎′′
𝑣 (¬(⟨post(𝑚), 𝜎′′

𝑣 ⟩ →inh F)). Both conditions specify that inhaling an

assertion cannot fail. Intuitively, if inhaling an assertion cannot fail in any
state, then the assertion must provide all permissions required to evaluate

expressions in the assertion. In the implicit dynamic frames terminology,

this means that the assertion is self-framing [33, 101]. So, condition (1) [33]: Smans et al. (2012), Implicit Dynamic
Frames
[101]: Parkinson et al. (2012), The Relation-
ship Between Separation Logic and Implicit
Dynamic Frames

implies that the precondition is self-framing. Condition (2) is a slightly

weaker condition, since only those states are considered whose store 𝜎 is
compatible with the precondition (i. e. inhaling the precondition leads to a

normal outcome from a state whose store is 𝜎). For instance, if inhaling

the precondition never leads to a normal outcome (e.g. the precondition

is false), then condition (2) holds trivially. Another example showing

the discrepancy between the conditions is the following. Condition (1)

does not hold for precondition acc(x.f) && y.f > 0, since inhaling

this precondition fails in a state where arguments x and y are different,

and where there is no permission to y.f. However, condition (2) holds

for postcondition acc(x.f) && y.f > 0 if the precondition is x == y,

since all states considered in (2) must map x and y to the same value in

this case.

Why does well-formedness of the callee’s specification justify the opti-

mised method call translation? For the optimised inhale translation of

the callee’s postcondition, this is easier to see, since the property almost

directly follows from well-formedness. In the semantics of a call, the

inhale of a postcondition is relevant only in states in which the exhale

of the precondition succeeded. As a result, this inhale is relevant only

in states whose store is compatible with the precondition (we will dis-

cuss why in a moment). Therefore, well-formedness guarantees that this

inhale cannot fail, which means that all expressions evaluated as part

of the inhale must be well-defined (otherwise the inhale would fail).

Thus, the optimised inhale translation, which omits well-definedness

checks, is justified.

To show that the inhale of the callee’s postcondition is relevant only in

states whose store is compatible with the precondition one must show:

a successful exhale of the precondition implies that the inhale of the

130 3. Formally Validating Translations into an Intermediate Verification Language

precondition is successful from some state. This result follows from a

fundamental connection between remcheck (which forms the core of

exhale) and inhale, which we will formally prove in Subsection 3.5.3

on page 159. The connection states that if remcheck 𝐴 succeeds in a

state 𝜎𝑣 and we know that inhale 𝐴 cannot fail from a state 𝜎′
𝑣 that

differs from 𝜎𝑣 only on the permission mask, then inhaling 𝐴 from 𝜎′
𝑣

succeeds and adds precisely those permissions that the remcheck 𝐴

operation removed (as long as adding those permissions does not yield

an inconsistent state).

To justify the optimised exhale translation of the callee’s precondition

from well-formedness, one must deal with the fact that well-formedness

expresses the condition on the precondition via inhale and not exhale.

To do so, one can use the fundamental connection between inhale and

remcheck described in the previous paragraph. The intuition for the

justification is the following. Suppose the exhale of the precondition is

executed in a Viper state 𝜎𝑣 and suppose an expression 𝑒 in the precondi-

tion is evaluated as part of the corresponding remcheck operation. Thus,

for the evaluation of 𝑒 not to fail as part of the remcheck operation, 𝜎𝑣
must contain permissions to all heap locations evaluated in 𝑒. We know

that 𝜎𝑣 must contain all the permissions specified in the precondition

before 𝑒 (i. e. to the left of 𝑒 in the precondition) that were removed by the

remcheck operation, because otherwise the remcheck operation would

have failed before reaching the evaluation of 𝑒. Using the connection

between inhale and remcheck, we get that because the inhale of the

precondition does not fail (guaranteed by well-formedness), the inhale

of the precondition from a state with no permissions must also reach the

evaluation of 𝑒 by adding precisely those permissions that the remcheck

removed before reaching 𝑒. Thus, 𝑒 must be well-defined w.r.t. the added

permissions, otherwise the inhale of the precondition would fail. There-

fore, the optimised translation of the exhale is justified, since we know

that 𝜎𝑣 contains at least the added permissions.

Checking well-formedness

Let us now take a look at how the callee’s translation checks well-

formedness of a callee’s method specification. The callee’s translation

includes the specification well-formedness check right at the beginning

of the corresponding Boogie procedure, as shown for procedure bm in Fig-

ure 3.11 on page 127. The translation reflects the definition closely. First,

the inhale of the precondition is translated on line 16, which captures

condition (1) in the well-formedness definition (inhaling the precondition

does not fail in any state). Here, the Viper heap and permission mask are

captured by Boogie variables H and M, respectively. Second, the inhale of

the postcondition is translated in a separate branch on lines 18 - 21, which

captures condition (2) in the well-formedness definition (inhaling the

postcondition does not fail in any state whose store is compatible with the

precondition). Here, the Viper heap and permission mask are captured

by fresh Boogie variables pH and pM, respectively. The Viper variables

tracked in the Viper store in this postcondition check are captured by cor-

responding Boogie variables, which have the same values as during the

encoding of condition (1). This reflects the fact that condition (2) considers

only Viper states whose store is compatible with the precondition.

3.3. The Existing Viper-to-Boogie Translation 131

There is one discrepancy between the encoding and the well-formedness

definition. At the beginning of both inhale operations, the Boogie

variable tracking the permission mask is initialised to track the empty

permission mask, even though the definition does not restrict the Viper

states to have no permissions. However, one can prove that if an inhale

cannot fail from a state without permissions, then it also cannot fail

from the same state where the permission mask is changed arbitrarily

as long as the inhaled assertion has no permission introspection. Since

Viper disallows permission introspection in specifications (except in a

specialised advanced construct called inhale-exhale assertions, which we

do not support), the check thus reflects the definition accurately.

Note that the inhale of m’s precondition translated on line 16 in procedure

bm serves two purposes: (1) ensuring the precondition’s well-formedness

as discussed above, and (2) additionally this translation is used to justify

the correctness of the method itself. Regarding (2), recall that a Viper

method is correct (Definition 3.2.1 on page 119) if inhaling the precondition

from every well-typed state without permissions, followed by executing

the method body, and finally exhaling the postcondition does not fail.

Lines 15-16 encode inhaling the precondition from every well-typed

state without permissions (this is the motivation for tracking the empty
permission mask in Boogie via line 15), line 23 encodes executing the

method body, and line 24 encodes exhaling the postcondition. Together

these lines encode the correctness of the method. The encoded branch

for the postcondition’s well-formedness does not interfere with the

method correctness encoding, since all Boogie executions at the end of

the branch are stopped using an assume false. Finally, note that the

translation of the exhale of a postcondition on line 24 to finalise the

method correctness check also omits well-definedness checks, which is

justified by the well-formedness of the callee’s specification.

3.3.5. Extended Boogie Subset

The Boogie subset formalised in Chapter 2 does not fully capture the

Boogie subset that the existing Viper-to-Boogie translation targets for

the Viper subset formalised in Section 3.2. In particular, the following

Boogie features are not formalised in Chapter 2 that are required for the

existing Viper-to-Boogie translation: (1) reals to represent permission

values, (2) unique constants to represent Viper fields (different unique

constants are guaranteed to have different values), and (3) polymorphic

maps to represent the Viper state. To deal with this, we additionally

formalised reals and unique constants, but did not extend the Boogie

certificate generation in Chapter 2 to support these (doing so should be

straightforward). To handle the more challenging omission of polymor-

phic maps, we provide a technique for representing polymorphic maps

in our formalised subset, as we will discuss in Subsection 3.3.6.

The formalisation of reals and unique constants is straightforward. For

reals, we made the following adjustments to the Isabelle formalisation:

(1) added an additional constructor for reals (represented by Isabelle

reals) to the algebraic data type definition for Boogie values, (2) added

a separate operator for the division between two reals, and (3) added a

unary operator that casts integers to reals. The semantics of (2) and (3)

is straightforward. Finally, we adjusted the Boogie typing rules to take

132 3. Formally Validating Translations into an Intermediate Verification Language

reals into account, and updated our Boogie type soundness proof and

our Isabelle tactic for automatically proving Boogie type judgements.

For unique constants, we needed to adjust our Boogie procedure cor-

rectness definition (Definition 2.3.1 on page 32 in Chapter 2) to have

another premise stating that values in the initial state corresponding

to different unique constants must be different. We made sure that the

verification condition produced by Boogie is consistent with this premise

by manually inspecting the generated verification condition for examples

with unique constants.
13

13: Note that we needed manual inspec-

tion, because we did not extend the Boo-

gie certificate generation for unique con-

stants.

3.3.6. Background Theory and Polymorphic Maps

So far, we have seen examples showing the existing translation of Viper

methods into Boogie procedures. In addition to Boogie procedures,

the existing translation of a Viper program includes global Boogie

declarations (i. e. type constructors, functions, global variables, constants,

and axioms) in the corresponding Boogie program, which form the

Boogie program’s background theory.

To justify the existing Viper-to-Boogie translation, one must take these

declarations into account. In particular, an important ingredient for this

justification is to derive from the correctness of a Boogie procedure 𝑝 that

𝑝’s procedure body has no failing executions. Then, using the fact that

no procedure has failing executions in a correct Boogie program, one

can derive that an input Viper program is correct if the corresponding

Boogie program is correct. The correctness of a Boogie procedure 𝑝

(Definition 2.3.1 on page 32 in Chapter 2) guarantees that 𝑝’s body cannot

fail for any interpretation of the uninterpreted types and functions that

is well-formed (e.g. the function interpretation respects the declared

function signatures), and for which all the Boogie axioms in the Boogie

program are satisfied in the initial Boogie state (axioms may refer to

constants in the state). Thus, to derive that 𝑝’s body has no failing

executions from the correctness of 𝑝, we must choose a type interpretation,

a function interpretation, and values for each constant such that the choice

satisfies the required conditions.

The goal of this subsection is to (1) provide examples for the declarations

generated by the existing Viper-to-Boogie translation, and (2) to then

discuss our solution to the main challenge for choosing an appropriate

type and function interpretation for these declarations, which is dealing

with polymorphic Boogie maps.

Global Boogie declarations

A subset of the global Boogie declarations always emitted by the existing

Viper-to-Boogie translation is given by:

▶ Uninterpreted types bref and bfield to model Viper references

and fields. bref takes no type arguments and bfield takes one

type argument indicating the type of the corresponding Viper

field.
14

14: In practice, bfield takes one more

type argument that we ignore for the

sake of presentation. This additional type

argument is relevant only for features

outside of our supported Viper subset.

3.3. The Existing Viper-to-Boogie Translation 133

▶ An uninterpreted function GoodMask that maps a permission map

to a Boolean and an axiom restricting this function to return true

only if the permission map models a consistent Viper permission

mask (see Figure 3.9 on page 124 for an encoding using GoodMask).

▶ An uninterpreted function idOnPositive, which maps two heap

maps and a permission map to a Boolean, and an axiom restricting

this function to return true only if the two heap maps agree on all

locations to which the permission map stores positive permission

(see Figure 3.9 on page 124 for an encoding using idOnPositive).

▶ Global variables H and M to model the Viper heap and permission

mask, respectively. H[x,f] stores the heap value for heap location

x.f and M[x,f] stores the permission value for x.f (permission

values are represented via Boogie reals). The types of both variables

are represented via Boogie’s impredicatively-polymorphic maps [67],

which we explain below.

▶ Constants to model various Viper constructs such as the null

reference and the empty Viper permission mask. Moreover, there

is one Boogie constant per Viper field; these constants modelling

fields are marked as unique constants (see Subsection 3.3.5 on

page 131) to reflect that different Viper fields are never part of the

same heap location.

Figure 3.12 shows a subset of the Boogie background generated by

the existing Viper-to-Boogie translation for a Viper program with two

integer fields and one Boolean field. The first two axioms constrain the

uninterpreted functions GoodMask and idOnPositive, respectively, and

the third axiom constrains the constant ZeroMask that models the empty

permission mask. In these axioms, HeapType and MaskType represent the

(polymorphic) map types for modelling the Viper heap and the Viper

permission mask, respectively.

For the most part, choosing a type interpretation, function interpretation,

and constant values to satisfy the required constraints (e.g. the axioms

hold) for the declarations emitted by the existing Viper-to-Boogie transla-

tion is straightforward. For instance, the interpretation of type constructor

bref can be directly mapped to the Viper reference values. The function

GoodMask can be interpreted to precisely match the condition imposed

by the corresponding axiom: evaluating to true iff the input permission

map contains permissions that are most 1. The constant ZeroMask can be

mapped to the empty permission map.

The main challenge is dealing with the polymorphic map types that model

the Viper heap and Viper permission mask (i. e. HeapType and MaskType),

since the Boogie formalisation from Chapter 2 does not support maps.

Moreover, we are not aware of any existing formalisation of polymorphic

maps and it is also not clear whether Isabelle can directly express types

that capture every possible polymorphic map. As we will discuss next,

we instead encode HeapType and MaskType into the subset formalised

in Chapter 2 by representing these types as Boogie type constructors,

and including additional Boogie functions and axioms. As we discuss

next, providing a type interpretation for these type constructors is not

straightforward.

134 3. Formally Validating Translations into an Intermediate Verification Language

type bref;
type bfield _;

function GoodMask(Mask: MaskType) : bool;
function idOnPositive(H1: HeapType, H2: HeapType, M: MaskType) : bool;

var H: HeapType;
var M: MaskType;

const ZeroMask: MaskType;
const null: ref;

const unique f1: bfield int;
const unique f2: bfield int;
const unique f3: bfield bool;

axiom (
forall M: MaskType :: GoodMask(M) ==>
forall x: bref :: forall <T> ::
forall f: bfield T :: M[x,f] >= 0 && M[x,f] <= 1

);

axiom (
forall H1: HeapType :: forall H2: HeapType ::
forall M: MaskType :: idOnPositive(H1,H2,M) ==>
forall x: bref :: forall <T> :: forall f: bfield T ::
M[x,f] > 0 ==> H1[x,f] == H2[x,f]

);

axiom (
forall x: bref :: forall <T> :: forall f: bfield T ::
ZeroMask[x,f] == 0

);

Figure 3.12: A subset of the Boogie background declarations generated by the existing Viper-to-Boogie

translation for a Viper program with two integer fields and one Boolean field. MaskType and HeapType
are expressed via polymorphic map types (the concrete polymorphic map types are not shown here). The

constants f1, f2, and f3 model the three fields. The Boogie axioms shown here constrain the GoodMask and

idOnPositive uninterpreted Boogie functions, and the ZeroMask constant. We omit triggers for the quantifiers,

which the existing translation uses to direct the SMT solver to restrict quantifier instantiations (leveraging

SMT solver support for the E-matching quantifier instantiation technique [106]). Triggers do not impact our

Boogie semantics.

Polymorphic maps

The Viper heap and permission mask are modelled (via the existing Viper-

to-Boogie translation) using Boogie’s polymorphic maps; this choice is not

unusual (e.g. a prior version of the existing Dafny-to-Boogie translation

also used polymorphic maps with similar polymorphic map types to the

ones used by the Viper-to-Boogie translation). The Boogie maps used to

model Viper heaps have the polymorphic map type <T>[bref, bfield

T]T: a total map storing, for any type T, values of type T given (as key) a

pair consisting of a reference and a field with type argument T.

To our knowledge, there exists no formal model for Boogie’s polymorphic

maps. Providing a general model is challenging: in particular, Boogie’s

3.3. The Existing Viper-to-Boogie Translation 135

type HeapType;

function readHeap<T>(h: HeapType, x: bref, f: bfield T) : T;
function updHeap<T>(h: HeapType, x: bref, f: bfield T, v: T) : HeapType;

axiom (
forall h: HeapType ::
forall x: bref :: forall <T> :: forall f: bfield T :: forall v: T ::
readHeap(updHeap(h,x,f,v),x,f) == v

);

axiom (
forall h: HeapType ::
forall x: bref :: forall <T> :: forall f: bfield T :: forall v: T ::
forall y: bref :: forall <T’> :: forall f’: bfield T’ ::
(x != y || f != f’) ==> readHeap(updHeap(h,x,f,v),y,f’) == readHeap(h,y,f’)

);

Figure 3.13: Global Boogie declarations for modelling the polymorphic map type for the heap.

polymorphic maps are impredicative: a map 𝑚 of type <T>[T]T’ permits

any value as a key, including the map 𝑚 itself! Instead of providing a

formal model for polymorphic maps in general, we provide one tailored

to those that the existing Viper-to-Boogie translation uses. To aid the

incorporation of our model, we adjust the existing translation to represent

a polymorphic map via an uninterpreted type (e.g. HeapType for the heap),

polymorphic functions for reading from and updating a polymorphic

map (e.g. readHeap and updHeap for the heap), and two axioms that

express the relationship between the two functions; Figure 3.13 shows

the concrete global declarations emitted for representing the heap. The

only change in the translation itself is to simply rewrite heap and mask

lookups and updates into calls to these functions; everything else remains

identical. The same approach could be used for e.g. the prior version of

the Dafny-to-Boogie translation.

As discussed above, to derive from the correctness of a Boogie procedure

that there are no failing executions of the Boogie procedure body, we

need to provide suitable interpretations for these new components (e.g.
HeapType, readHeap, and updHeap for the heap) such that, in particular,

the axioms are fulfilled. The challenge here is avoiding circularities:

e.g. if the field provided to readHeap has type parameter HeapType,

then the instantiation of readHeap must itself return a heap. That is, to

construct an initial heap, we already need a heap of the same type. To

break this circularity, we instantiate HeapType as a partial mapping from

reference and fields to values, and interpret the empty map to be of type

HeapType, which provides us with a concrete heap. readHeap is defined

to return a default value for reference and field pairs that are not in the

domain of the partial map (the default value’s type matches the type

parameter of the field); for the type parameter HeapType, the default

value is the empty map. This is sufficient to prove the axioms, since the

axioms (see Figure 3.13) require readHeap returning a specific value for

a given heap ℎ and reference-field pair (𝑟, 𝑓), only if ℎ is expressible via

a sequence of updHeap updates and one of those updates inserts a value

for (𝑟, 𝑓).

136 3. Formally Validating Translations into an Intermediate Verification Language

Handling polymorphic maps via monomorphisation

An alternative approach to representing the heap in Boogie would

be to change the translation to also have an uninterpreted type con-

structor HeapType as in our solution, but to instead add separate

non-polymorphic functions readHeapT and updHeapT for every concrete

type T used as a field type in the program. This alternative approach

essentially corresponds to a monomorphisation of our approach, which

desugars the polymorphic function readHeap and updHeap into multi-

ple non-polymorphic versions. A similar monomorphisation approach

of polymorphic maps was added as an option recently by Boogie

developers [99]. For the existing Viper-to-Boogie translation, such a

monomorphisation solution would circumvent the circular problem

of needing to model a heap that itself stores heaps when defining the

type interpretation of HeapType. The reason is that Viper programs

cannot contain fields that themselves store heaps and the existing

Viper-to-Boogie translation does not store heaps in fields for encoding

purposes. The goal of our solution (with polymorphic update and

read functions) is to provide a more-general solution that accurately

reflects the polymorphic map type for arbitrary programs (beyond

Viper) and different kinds of Boogie encodings (beyond the existing

Viper-to-Boogie translation). Thereby, our solution provides addi-

tional insights for the formal treatment of polymorphic map types in

general.

3.3.7. Instantiating the Abstract Boogie Values and

Defining the Type Interpretation

The Boogie values formalised in Chapter 2 are given by the following

algebraic data type:

′𝑎 val ≜ IntVal(intisa) | BoolVal(boolisa) | AbsVal(′𝑎)

Here, AbsVal(′𝑎) denotes the abstract Boogie values used to represent

inhabitants of the uninterpreted types obtained via the type constructors

in a Boogie program. This definition of values is parametric in the carrier

type
′𝑎. In order to choose a type interpretation for the type constructors in

a Boogie program, one must first instantiate this carrier type appropriately.

In this subsection, we present our instantiation of the carrier type
′𝑎,

and then discuss how to define a suitable type interpretation (e.g. the

interpretation is well-formed and the axioms are satisfied with such

an interpretation) for the Boogie programs generated by the existing

Viper-to-Boogie translation.

We instantiate the carrier type using the following algebraic data type

absValVpr, which uses an auxiliary algebraic data type absFieldVpr:1515: The data type used in our Isabelle

formalisation contains more cases to cap-

ture parts of the Boogie encoding that

we have not presented here.

absFieldVpr ≜ NormalField(stringisa , VType) | OtherField(BType)
absValVpr ≜ ARef(ref) | AField(absFieldVpr) |

AHeap(ref × absFieldVpr ⇀ (absValVpr val)) |
AMask(ref × absFieldVpr → realisa) |
AOther(stringisa ,

„BType)

3.3. The Existing Viper-to-Boogie Translation 137

Here, VType and BType denote the Viper and Boogie types, respectively.

Ignore the OtherField(·) and AOther(·, ·) constructors for now; we will

come back to them later. absValVpr contains separate constructors to

represent Viper references, fields, heaps, and permission masks. ref is the

algebraic data type for Viper references that is defined in Subsection 3.2.3

on page 108, and so Viper references are represented directly in the

instantiation. Fields in absValVpr are represented by the algebraic data

type absFieldVpr. A Viper field with identifier 𝑓 (embedded as a string in

Isabelle) and type 𝜏 in Viper is represented by the value NormalField(𝑓 , 𝜏).
Including the field’s type 𝜏 in this value is advantageous. This type

makes clear to which Boogie type NormalField(𝑓 , 𝜏) should be interpreted

by a type interpretation (namely to the type bfield(vprToBoogieTyp(𝜏)),
where bfield is the type constructor for the fields discussed in Subsec-

tion 3.3.6 and vprToBoogieTyp(𝜏) is the Boogie type modelling the Viper

type 𝜏). Moreover, the field’s type also makes clear what the type of the

values stored in the Boogie heap representation should be for those fields.

The Viper heap is represented as a partial map from references and fields

to values: as we discussed in Subsection 3.3.6, such a representation deals

with the circularity challenge that shows up for a polymorphic Boogie

map representing the heap. The range of the partial map is given by

the Boogie values where the carrier type is instantiated with absValVpr.
Finally, the Viper permission mask is represented as a total map from

references and fields to reals. The circularity challenge discussed in Sub-

section 3.3.6 for the heap does not arise for the permission mask, since

the permission mask’s range is specified by a primitive type.

A type interpretation for absValVpr is a function from absValVpr to

uninterpreted Boogie types (i. e. types obtained via type constructors)

that are closed (i. e. without type variables). There are two points one

must take into account when choosing a suitable type interpretation:

First, the type interpretation is a total (instead of partial) mapping, which

means every value in absValVpr must be mapped to a type. Changing

the semantics to work with a partial type interpretation would lead

to additional challenges when formally validating Boogie’s verification

condition generation (see the end of Subsection 2.6.3 on page 66). Second,

the type interpretation must be well-formed, which must ensure that every
possible type is inhabited (see Subsection 2.3.4 on page 31 in Chapter 2).

This includes types obtained via type constructors declared in the Boogie

program, but which do not model any Viper construct, and types obtained

via type constructors that are not declared in the Boogie program. Well-

formedness of the type interpretation is required to justify Boogie’s

encoding of functions in the verification condition (see Subsection 2.6.3 on

page 66). The interesting cases for choosing a suitable type interpretation

deal with both of these points (type interpretation must be total and

well-formed). In particular, these cases include the mapping to types

for values AHeap(ℎ) representing the heap, and the mapping to types

for values obtained from the OtherField(·) and AOther(·, ·) constructors,

which we have ignored so far. In the following, we discuss our type

interpretation for these cases.

We choose to map the value AHeap(ℎ) to a type conditionally depending

on properties of the partial function ℎ as follows. If ℎ maps each pair

(𝑟, 𝑓) in its domain to a Boogie value that matches the type specified by 𝑓 ,

then we choose to map AHeap(ℎ) to HeapType, which is the uninterpreted

138 3. Formally Validating Translations into an Intermediate Verification Language

type representing Viper heaps. Otherwise, we choose to map AHeap(ℎ) to

a closed type 𝜏fresh that does not appear in Boogie programs generated by

the existing Viper-to-Boogie translation. With this distinction, we make

sure that the underlying partial map of HeapType values respects the

types of the fields. This allows us, for instance, to show that our function
interpretation of the Boogie function readHeap, which reads from the

partial map if the reference-field pair is in the domain, returns a value

of the declared return type. The reason we need to map AHeap(ℎ) to a

type in the second case (i. e. ℎ does not respect the type of at least one

field) is because the type interpretation must be total. Note that our type

interpretation also uses type 𝜏fresh for the cases discussed below.

Let us now turn our focus to the OtherField(·) and AOther(·, ·) constructors.

The purpose of these constructors is to be able to define a well-formed type

interpretation, which must ensure that every possible type is inhabited.

This includes types obtained via the field type constructor bfield, which

takes one type argument representing the values stored for that field. If

the type argument 𝜏 does not represent a Viper type, then bfield(𝜏) does

not model any Viper field. For instance, bfield (bfield int) does not

model any Viper field, since bfield int does not model a Viper type. To

make sure such types are inhabited, we use OtherField(𝜏). In particular,

we choose to map OtherField(𝜏) to the type bfield(𝜏) if 𝜏 is closed and

otherwise to 𝜏fresh, which makes sure all types obtained from bfield are

inhabited. Moreover, we use AOther(𝐶, ts) to ensure every remaining type

is inhabited. In particular, if 𝐶 is a type constructor that does not occur in

Boogie programs generated by the existing Viper-to-Boogie translation

and ts are closed types, then we choose to map AOther(𝐶, ts) to the type

𝐶(ts). Otherwise, we choose to map AOther(𝐶, ts) to 𝜏fresh. This ensures

that all types are inhabited.

This concludes our discussion of different aspects of the existing Viper-

to-Boogie translation. Next, we will present our simulation methodology

that forms the core of our formal validation approach (Section 3.4) and

how we apply this methodology to generate certificates for the existing

Viper-to-Boogie translation (Section 3.5).

3.4. A Forward Simulation Methodology for

Front-End Translations

A front-end translation is sound iff the correctness of an input program

is implied by the correctness of the correspondingly-translated IVL

program. In our setting: a Viper program (resp. a Boogie program) is

correct if each of its methods (resp. procedures) is correct. At a high level

(details in Subsection 3.2.6 on page 119 and Subsection 2.3.4 on page 31),

a method (resp. procedure) is correct if its body has no failing executions.

Thus, certifying a Viper-to-Boogie translation boils down to proving that

if the Viper program has a failing execution, then the translated Boogie

program has one also.

We generate such certificates automatically via a novel general method-

ology for decomposing and modularly proving forward simulations [74][74]: Lynch et al. (1995), Forward and Back-
ward Simulations: I. Untimed Systems

between source and IVL target statements. Our generated certificates

3.4. A Forward Simulation Methodology for Front-End Translations 139

contain sufficient information such that Isabelle can successfully check

them automatically. We observed early on that generating such certificates

directly based on knowledge of the entire translation would require han-

dling the entire semantic gap between the source and target languages

monolithically in one result, which would be both infeasible to automate

effectively and highly-brittle to any changes in the translation.

Instead, our methodology employs a combination of key strategies that

work together to achieve reliable and robust automation of our formal

simulation results, and which tackle the challenges for front-end trans-

lation outlined in Section 3.1: (1) syntactic and semantic decompositions
into smaller and more-focused simulation sub-results that are easier to

automate, (2) generic simulation judgements which can be instantiated to

obtain the diverse simulation notions we require, (3) generic lemmas in-

volving generic simulation judgements which factor out common idioms

arising in diverse facets of the translation, and (4) contextual hypotheses
which can be injected into simulation proofs to handle the non-locality

of certain translation checks. We present these key ingredients of our

methodology in this section.

We illustrate these key ingredients for Viper (as the input language)

and Boogie (as the IVL), but they can be naturally ported to other input

languages and IVLs if one provides a formal semantics for the languages.

This is because our ingredients are parametric in the state relations

and IVL statements employed in a translation. Another consequence is

that the methodology presented in this section allows capturing many

translations from Viper to Boogie beyond the existing translation. That is,

we do not make choices specific to the existing translation in this section;

we will consider the application of the methodology to the existing

translation in the next section (Section 3.5).

Apart from the generality of the methodology w.r.t. different front-end

translations, we have also taken care in this section to provide approaches

that help with extending the approach to more input language features

(e.g. to more Viper features than we consider in our application to Viper).

We achieve this in three ways, which we will clarify in the section. First,

we phrase all of our simulations as instantiations of the same generic

simulation judgement, which allows proving results once that can then

be composed to obtain results of instantiations without much effort, as

opposed to redoing work for each instantiation. Thus, there is a systematic

way of saving work when adding support for new features. Second, we

decompose simulations into smaller simulations, which allows different

Viper features or even different aspects of the same feature to be handled

independently from each other. Third, we develop a systematic approach

to deal with translations justified by non-local checks, which enables

using a single high-level certification strategy for dealing with features

that have alternative translations justified by non-local checks. As a result,

fewer strategies need to be maintained, which is important when the

supported subset increases.

140 3. Formally Validating Translations into an Intermediate Verification Language

3.4.1. Focusing Forward Simulation Proofs by

Decomposition

Intuitively, a forward simulation between a Viper and a Boogie statement

shows that for any execution of the Viper statement, there exists a

corresponding execution of the Boogie statement that simulates it. By

defining the simulation such that a failing Viper execution is simulated

only by failing Boogie executions, a forward simulation implies our

desired result in particular.

To tackle the complexity of automatically (and reliably) generating simu-

lation proofs in general for the Viper-to-Boogie translation, we employ a

variety of strategies for aggressively decomposing the desired simula-

tion result into smaller and simpler sub-goals that are themselves still

simulation results. These decompositions are sometimes intuitive based

on the syntax: for example, in the case of decomposing the simulation

of a Viper sequential composition into simulations for its constituent

statements, and in the case of decomposing the simulation of a remcheck

of a separating conjunction into simulations for the remcheck of its two

conjuncts. However, we go further than the syntax, decomposing across

different semantic concerns for the same Viper statement, into what we call

Viper effects.

For example, we discussed in Subsection 3.2.5 that the semantics of

exhale consists of two effects, remcheck and a nondeterministic assign-

ment. The simulation proofs for each of these Viper effects are made

separately, and then composed for a simulation proof for the primitive

statement as a whole; this would in turn be composed with simula-

tion proofs for other sequentially-composed statements, and so on. The

simulation proof for the remcheck effect is further split, for instance,

into simulation proofs for different conjuncts. Note in particular, that

simulation proofs may need to relate only a part of the semantics of a

Viper statement to some appropriate Boogie code. This requires adding

sufficient contextual information to such simulations, which captures

how the simulation relates to the simulation of the entire statement.

Via our decompositions, each resulting simulation proof focuses on

a different specific semantic concern with respect to the translation

in question; these proofs can be made simple enough to discharge

automatically, optionally with tailored tactics. Apart from enabling

automation, another advantage of our decompositions is that it reduces

the effort significantly when adapting the simulation proof to local

changes in the translation and extending simulation proofs to more input

language constructs. Adapting the simulation proof to local changes in

the translation in many cases affects only the part that is changed, since

our decomposition separates different semantic concerns into different

simulations. Similarly, adding support for the translation of a new input

language construct allows one to focus on that language construct in

isolation (if the construct does not fundamentally change how to reason

about the remaining constructs).

Without care, our decomposition approach could lead easily to an ex-

plosion of ad hoc simulation judgements with disparate forms and

parameters. Instead, our simulation methodology defines a single, generic
simulation judgement which can be instantiated appropriately to define

3.4. A Forward Simulation Methodology for Front-End Translations 141

simΓ𝑏 (𝑅in , 𝑅out , Succ, Fail, 𝛾in , 𝛾out) ≜ ∀𝜏, 𝜎𝑏 . 𝑅in(𝜏, 𝜎𝑏) =⇒(
∀𝜏′. Succ(𝜏, 𝜏′) =⇒ ∃𝜎′

𝑏 . Γ𝑏 ⊢ (𝛾in ,N(𝜎𝑏)) →∗
AST2 (𝛾out ,N(𝜎′

𝑏)) ∧ 𝑅out(𝜏′, 𝜎′
𝑏)
)
∧ (Success case)(

Fail(𝜏) =⇒ ∃𝛾′. Γ𝑏 ⊢ (𝛾in , 𝜎𝑏) →∗
AST2 (𝛾′, F)

)
(Failure case)

stmSimΓ𝑣 ,Γ𝑏 (𝑅, 𝑅′, 𝑠 , 𝛾, 𝛾′) ≜
simΓ𝑏 (𝑅, 𝑅′,𝜆𝜎𝑣 𝜎′

𝑣 . Γ𝑣 ⊢ ⟨𝑠, 𝜎𝑣⟩ →v N(𝜎′
𝑣),𝜆𝜎𝑣 . Γ𝑣 ⊢ ⟨𝑠, 𝜎𝑣⟩ →v F, 𝛾, 𝛾′)

wfSimΓ𝑏 (𝑅, 𝑅′, 𝑒 , 𝛾, 𝛾′) ≜ simΓ𝑏

©«
𝑅, 𝑅′,
(𝜆(𝜎0

𝑣 , 𝜎𝑣) (𝜎1

𝑣 , 𝜎
′
𝑣). (𝜎0

𝑣 , 𝜎𝑣) = (𝜎1

𝑣 , 𝜎
′
𝑣) ∧ ∃𝑣. 𝜎0

𝑣 ⊢ ⟨𝑒 , 𝜎𝑣⟩ ⇓v V(𝑣)),
(𝜆(𝜎0

𝑣 , 𝜎𝑣). 𝜎0

𝑣 ⊢ ⟨𝑒 , 𝜎𝑣⟩ ⇓v), 𝛾, 𝛾′

ª®¬
wfSimListΓ𝑏 (𝑅, 𝑅′, es, 𝛾, 𝛾′) ≜ simΓ𝑏

©«
𝑅, 𝑅′,(
𝜆(𝜎0

𝑣 , 𝜎𝑣) (𝜎1

𝑣 , 𝜎
′
𝑣). (𝜎0

𝑣 , 𝜎𝑣) = (𝜎1

𝑣 , 𝜎
′
𝑣) ∧

∃vs. 𝜎0

𝑣 ⊢ ⟨es, 𝜎𝑣⟩ [⇓]v V(vs)

)
,

(𝜆(𝜎0

𝑣 , 𝜎𝑣). 𝜎0

𝑣 ⊢ ⟨es, 𝜎𝑣⟩ [⇓]v), 𝛾, 𝛾′

ª®®®¬
inhSimΓ𝑏 (𝑅, 𝑅′, 𝐴, 𝛾, 𝛾′) ≜ simΓ𝑏 (𝑅, 𝑅′, (𝜆𝜎𝑣 𝜎′

𝑣 . ⟨𝐴, 𝜎𝑣⟩ →inh N(𝜎′
𝑣)), (𝜆𝜎𝑣 . ⟨𝐴, 𝜎𝑣⟩ →inh F), 𝛾, 𝛾′)

rcSimΓ𝑏 (𝑅, 𝑅′, 𝐴, 𝛾, 𝛾′) ≜ simΓ𝑏

(
𝑅, 𝑅′, (𝜆(𝜎0

𝑣 , 𝜎𝑣) (𝜎1

𝑣 , 𝜎
′
𝑣). 𝜎0

𝑣 = 𝜎1

𝑣 ∧ 𝜎0

𝑣 ⊢ ⟨𝐴, 𝜎𝑣⟩ →rc N(𝜎′
𝑣)),

(𝜆(𝜎0

𝑣 , 𝜎𝑣). 𝜎0

𝑣 ⊢ ⟨𝐴, 𝜎𝑣⟩ →rc F), 𝛾, 𝛾′

)
Figure 3.14: The definition of the generic forward simulation judgement sim and five common instantiations.

Note that the Boogie AST reduction is expressed using the reflexive-transitive closure of the →AST2 one-step

reduction, which reduces each basic command in a separate step instead of reducing the list of basic commands

at the beginning of a statement block in one step (see Subsection 2.8.2 on page 81 in Chapter 2), providing

more flexibility for simulations.

each particular simulation judgement required. This allows us to prove

lemmas that capture different idioms (e.g. composition, conditional eval-

uation, etc.) once using our generic simulation judgement. These generic

lemmas can then be reused for different instantiations; Subsection 3.4.3

presents some examples of generic lemmas. We design our generic judge-

ments to support instantiations which reflect not only the semantics of

the particular effect in isolation, but to optionally include additional

contextual information to specialise and aid the simulation proof itself.

3.4.2. One Simulation Judgement to Rule Them All

Our generic forward simulation judgement sim is defined in Figure 3.14.

All concrete forward simulations (e.g. for statements, well-definedness

checks, etc.) are instantiations of this judgement. As well as aiding

understanding, this approach enables both tactics which manipulate

this generic judgement directly, and generic composition proof rules which

embody recurring proof idioms that are applicable to different concrete

forward simulations (Subsection 3.4.3).

The simulation judgement sim is defined in terms of multiple parameters:

(1) a Boogie context Γ𝑏 , (2) an input relation 𝑅in and an output relation
𝑅out on Viper and Boogie states, (3) a success predicate Succ characterising

the set of input and output Viper state pairs (𝜏, 𝜏′) for which there

is a successful Viper execution from 𝜏 to 𝜏′, (4) a failure predicate Fail
characterising the set of input Viper states that result in a failing execution,

(5) input and output Boogie program points 𝛾in and 𝛾out where the Boogie

executions are expected to start and end, respectively. The success and

142 3. Formally Validating Translations into an Intermediate Verification Language

failure predicate together abstractly describe the set of Viper executions

that must be shown to be simulated.

simΓ𝑏 (𝑅in , 𝑅out , Succ, Fail, 𝛾in , 𝛾out) holds iff for any Viper and Boogie

input states related by 𝑅in, the following two conditions hold: (1) for

any successful Viper execution from the input Viper state to an output

Viper state 𝜏′, there must be a Boogie execution from program point

𝛾in and the input Boogie state to program point 𝛾out and some output

Boogie state that is related to 𝜏′ by 𝑅out, and (2) if the Viper execution fails

starting from the input state, then there must be a failing Boogie execution

from 𝛾in and the input Boogie state (the reached Boogie program point

need not be 𝛾out). The second condition is the end goal that we need, to

show soundness of the Viper-to-Boogie translation. The first condition is

needed in order to derive sim compositionally; it guarantees, for example,

that not all Boogie executions for a successful Viper execution produce a

magic outcome.

sim abstracts over the concrete representation of Viper states: any in-

stantiation for the representation of a Viper state works. We require this

abstraction, since our instantiations of sim use two different instantiations

for the representation of a Viper state: (1) the instantiation given by

the standard notion of a Viper state introduced in Subsection 3.2.3 on

page 108, and (2) an instantiation using a pair of the standard Viper

states since both the expression evaluation judgement and the remcheck

reduction are defined via two standard Viper states. Abstracting over the

representation of Viper states in sim is possible, since the success and

failure predicates are parameters of sim.

Five key instantiations of sim that we use heavily are shown at the bottom

of Figure 3.14. The instantiation stmSim is the forward simulation for

Viper statements, where the representation of the Viper state in sim
is instantiated to be the standard notion of a Viper state introduced

in Subsection 3.2.3 on page 108. The success predicate is instantiated to

hold iff there is a successful Viper statement reduction from the input

to the output state, and the failure predicate is instantiated to hold iff

there is a failing Viper statement reduction from the input state. Thus,

the resulting failure case in sim directly gives us the key property to

show the soundness of a Viper-to-Boogie translation. The instantiation

inhSim is the forward simulation for the reduction of an inhale operation,

where the representation of the Viper state in sim is instantiated to be the

standard notion of a Viper state. wfSim is the forward simulation for the

well-definedness check of a Viper expression. The instantiation wfSimList
is the analogous simulation for a list of Viper expressions. In both of these

instantiations, the representation of the Viper state in sim is instantiated

to be a pair of standard Viper states, where the first state represents

the permission definedness state and the second state represents the

evaluation state (see Subsection 3.2.4 for this distinction). The instantiation

of the success predicate explicitly expresses that neither Viper state

changes during the evaluation of expressions. The instantiation rcSim is

the forward simulation for remcheck and instantiates the representation

of the Viper state in sim via a pair of standard Viper states as wfSim
does. The first state represents the permission definedness state and

the second state represents the reduction state (see Subsection 3.2.5 for

this distinction). The success predicate expresses that the permission

definedness state does not change during a remcheck operation.

3.4. A Forward Simulation Methodology for Front-End Translations 143

simΓ𝑏 (𝑅, 𝑅′, 𝑆1 , 𝐹1 , 𝛾, 𝛾′)
simΓ𝑏 (𝑅′, 𝑅′′, 𝑆2 , 𝐹2 , 𝛾′, 𝛾′′)

∀𝜏, 𝜏′′. 𝑆(𝜏, 𝜏′′) ⇒ ∃𝜏′. 𝑆1(𝜏, 𝜏′) ∧ 𝑆2(𝜏′, 𝜏′′)
∀𝜏. 𝐹(𝜏) ⇒ 𝐹1(𝜏) ∨ ∃𝜏′. 𝑆1(𝜏, 𝜏′) ∧ 𝐹2(𝜏′) (comp)

simΓ𝑏 (𝑅, 𝑅′′, 𝑆, 𝐹, 𝛾, 𝛾′′)

bSimΓ𝑏 (𝑅, 𝑅1 , 𝛾, 𝛾1)
simΓ𝑏 (𝑅1 , 𝑅2 , 𝑆, 𝐹, 𝛾1 , 𝛾2)

bSimΓ𝑏 (𝑅2 , 𝑅
′, 𝛾2 , 𝛾′) (bprop)

simΓ𝑏 (𝑅, 𝑅′, 𝑆, 𝐹, 𝛾, 𝛾′)

stmSimΓ𝑣 ,Γ𝑏 (𝑅, 𝑅′, 𝑠1 , 𝛾, 𝛾′)
stmSimΓ𝑣 ,Γ𝑏 (𝑅′, 𝑅′′, 𝑠2 , 𝛾′, 𝛾′′) (seq-sim)

stmSimΓ𝑣 ,Γ𝑏 (𝑅, 𝑅′′, (𝑠1; 𝑠2), 𝛾, 𝛾′′)
where

bSimΓ𝑏 (𝑅, 𝑅′, 𝛾, 𝛾′) ≜

simΓ𝑏 (𝑅, 𝑅′,𝜆𝜏 𝜏′. 𝜏 = 𝜏′,𝜆_. ⊥, 𝛾, 𝛾′)

simΓ𝑏 (𝑅′
0
, 𝑅′

1
, 𝑆′, 𝐹′, 𝛾, 𝛾′)

∀𝜎𝑣 𝜎𝑏 . 𝑅0(𝜎𝑣 , 𝜎𝑏) ⇒ 𝑅′
0
(𝜎𝑣 , 𝜎𝑏) (weaker input relation)

∀𝜎𝑣 𝜎′
𝑣 𝜎𝑏 . 𝑅0(𝜎𝑣 , 𝜎𝑏) ⇒ 𝑆(𝜎𝑣 , 𝜎′

𝑣) ⇒ 𝑆′(𝜎𝑣 , 𝜎′
𝑣) (weaker success predicate)

∀𝜎𝑣 𝜎𝑏 . 𝑅0(𝜎𝑣 , 𝜎𝑏) ⇒ 𝐹(𝜎𝑣) ⇒ 𝐹′(𝜎𝑣) (weaker failure predicate)

∀𝜎𝑣 𝜎′
𝑣 𝜎𝑏 𝜎′

𝑏
. 𝑅0(𝜎𝑣 , 𝜎𝑏) ⇒ 𝑆(𝜎𝑣 , 𝜎′

𝑣) ⇒ 𝑅′
1
(𝜎′

𝑣 , 𝜎
′
𝑏
) ⇒ 𝑅′′

1
(𝜎′

𝑣 , 𝜎
′
𝑏
) (stronger output relation)

(conseq)
simΓ𝑏 (𝑅0 , 𝑅

′′
1
, 𝑆, 𝐹, 𝛾, 𝛾′)

Figure 3.15: The instantiation-independent rules comp, bprop, and conseq, and the concrete rule seq-sim for

the simulation of 𝑠1; 𝑠2.

These five common instantiations are all expressed directly via the

Viper reduction judgements introduced in Section 3.2. Like the generic

simulation judgement, these five instantiations are themselves generic,
abstracting away how the Viper and Boogie states are related by taking

the input and output state relations as parameters. As we will show

in Subsection 3.4.4, we also use instantiations of the success and failure

predicates that do not just use Viper reduction judgements (e.g. to express

the nondeterministic assignment of heap values in remcheck).

3.4.3. Instantiation-Independent Rules

Many simulation idioms arise repeatedly in a certification proof for

a complex translation. Notions of sequential composition, conditional

evaluation and stuttering steps are all good examples, which require a

certain stylised formal justification to reason about. Our generic simu-

lation judgement allows us to identify and formalise these idioms once

and for all, providing, for example, generic composition lemmas that

can be proved once and instantiated for different purposes. As a result,

there is less effort involved than when one needs to formalise the idioms

from scratch for every instantiation, thus making it easier to maintain

larger language subsets. In this subsection, we present these idioms as

inference rules, but in our formalisation they are expressed and proved

as regular lemmas.

For example, we prove a single general composition rule from which

we derive concrete rules to combine (1) simulations of 𝑠1 and 𝑠2 to a

simulation of 𝑠1; 𝑠2, (2) simulations of remcheck 𝐴1 and remcheck 𝐴2

to remcheck 𝐴1 && 𝐴2, (3) simulations of inhale 𝐴1 and inhale 𝐴2

to inhale 𝐴1 && 𝐴2. The general composition rule comp in Figure 3.15

captures the composition of two different instantiations of sim, where

the output relation and Boogie program point of the first instantiation

match the input relation and program point of the second one. The

144 3. Formally Validating Translations into an Intermediate Verification Language

two final premises constrain the resulting success and failure predicates.

In particular, the composed Viper execution should fail only if either

the first instantiation fails or if the second instantiation fails in a state

successfully reached by the first one. The rule seq-sim in Figure 3.15 shows

the concrete composition rule for 𝑠1; 𝑠2, which is derived from comp. Note

that seq-sim does not impose any constraints on the Boogie program

points, which is crucial to handle Viper’s and Boogie’s disparate ASTs

(see Subsection 3.2.1). We will discuss in Subsection 3.5.4 how we deal

with the AST mismatch when automating proofs.

As another example, the notion of simulation stuttering steps also arises in

many ways, whenever some Boogie code is generated that does not fully

correspond to a step in the Viper source. This includes initialisations of

auxiliary variables, or Boogie assume commands for properties implied

by the current simulation state relation. This idiom is captured by the

Boogie propagation rule bprop in Figure 3.15, in which bSim expresses

simulations in which the Viper state remains unchanged, and thus only

the Boogie state may change (potentially causing adjustment to the state

relations). The rule permits simulating Viper executions by first taking

steps only in the Boogie code, then simulating the Viper executions, and

finally taking steps only in the Boogie code.

As a final example, the rule conseq in Figure 3.15 shows a consequence

rule for the generic forward simulation judgement. The rule enables prov-

ing a simulation judgement by proving a different simulation judgement

where the input state relation, success predicate, and failure predicate

are weakened, and the output state relation is strengthened. For the

weakening and strengthening conditions, one may assume that the initial

states are related w.r.t. the original input state relation, since all guar-

antees of the simulation judgement are w.r.t. such initial states. For the

strengthening of the output state relation, one may additionally assume

that the Viper execution is successful, since the output state relation is

relevant only in case of success.

3.4.4. Examples: Generic Decomposition in Action

As outlined above, the general strategy for our simulation methodology

is to decompose our simulation goals as far as possible, while leaving

as many parameters generic as we can to enable maximal reuse of

our results. While decomposition handles the semantic gap, our use of

generic parameterisation provides the abstraction to address the diverse

translations used in practical translational verifiers. In the following, we

showcase our methodology on a selection of rules, but the same ideas

apply to all our formal rules.
16

In particular, note that these rules are not16: These rules are lemmas proved in

our Isabelle formalisation.
specific to the existing Viper-to-Boogie translation, and can be applied to

a large variety of different translations.

Consider the rule exh-sim for the simulation of exhale 𝐴 in Figure 3.16.

This rule decomposes the simulation of exhale 𝐴 into two Viper effects,

each of which is modelled in a premise. The first premise models the

simulation of the first effect, remcheck, which we can express via the

rcSim instantiation (see Figure 3.14 on page 141). The second premise

models the simulation of the second effect, the nondeterministic heap

3.4. A Forward Simulation Methodology for Front-End Translations 145

rcSimΓ𝑏 ([𝜆(𝜎0

𝑣 , 𝜎𝑣) 𝜎𝑏 . 𝜎0

𝑣 = 𝜎𝑣 ∧ 𝑅(𝜎𝑣 , 𝜎𝑏)], 𝑅′, 𝐴, 𝛾, 𝛾′) (sim. of remcheck 𝐴)
simΓ𝑏 (𝑅′, [𝜆(_, 𝜎𝑣) 𝜎𝑏 . 𝑅′′(𝜎𝑣 , 𝜎𝑏)], Succ2 ,𝜆_. ⊥, 𝛾′, 𝛾′′) (non-det. selection) (exh-sim)

stmSimΓ𝑣 ,Γ𝑏 (𝑅, 𝑅′′, exhale 𝐴, 𝛾, 𝛾′′)

Succ2 ≜ 𝜆(𝜎0

𝑣 , 𝜎𝑣) (_, 𝜎′
𝑣). nonDet(𝜎0

𝑣 , 𝜎𝑣 , 𝜎
′
𝑣) ∧ 𝜎0

𝑣 ⊢ ⟨𝐴, 𝜎0

𝑣⟩ →rc N(𝜎𝑣)

Figure 3.16: Rule for the simulation of exhale 𝐴. The definition of nonDet is given in Figure 3.6 on page 114.

assignment, which is captured by the first conjunct nonDet of the corre-

sponding success predicate and by the failure predicate, which reflects

that the nondeterministic assignment cannot fail. The two simulations are

connected by the fact that the output state relation 𝑅′
and output program

point 𝛾′
of the first premise match the input relation and program point

of the second premise.

By modularly abstracting over the details of these premises, and the

precise definitions of the states and state relations (e.g. the intermediate

relation 𝑅′
in this rule), we obtain robustness to diverse translations:

our rules do not constrain which exact Boogie statements correspond

to a Viper effect. For example, the Viper-to-Boogie implementation

establishes the nondeterministic heap assignment premise in exh-sim

in two different ways depending on whether the assertion contains an

accessibility predicate acc(𝑒. 𝑓 , 𝑝) or not; if not, then the implementation

does not emit any Boogie code for the nondeterministic assignment,

which is sound, since no permission is removed.

Note that this genericity does not prevent the rule from exploiting

contextual information. For example, the input state relation of the

first premise specifies that at the beginning of the remcheck 𝐴 effect

the permission definedness state and the reduction state are the same.

This property does not hold in general for executions of remcheck (e.g.
it might not hold when executing the second conjunct of a separating

conjunction), but it does hold here, at the beginning of an exhale. Without

this property, it would not be possible to prove the first premise in general

for a concrete Boogie encoding, because there would be no information

about the permission definedness state.

The second premise’s success predicate also includes contextual informa-

tion. It includes the fact that the current Viper state can be reached via

remcheck 𝐴. (This fact is expressed by using that the permission defined-

ness state in Succ2 is the same as the initial state in which remcheck 𝐴 is

reduced, since the permission definedness state does not change during

the reduction.) This fact allows us, for example, to conclude that the

nondeterministic assignment has no effect if remcheck 𝐴 removes no per-

missions, which is required to justify the case when the implementation

does not emit Boogie code for the nondeterministic assignment.

The rule assert-sim for the simulation of assert 𝐴 shown in Figure 3.17

is similar to the rule exh-sim for exhale 𝐴 in Figure 3.16. assert-sim also

decomposes the simulation into two effects. The simulation of the first

effect shown in the first premise models the simulation of the remcheck

effect and is identical to the first premise in exh-sim. However, the

simulation of the second effect shown in the second premise of assert-sim

is different from the second premise in exh-sim in interesting ways.

146 3. Formally Validating Translations into an Intermediate Verification Language

rcSimΓ𝑏 ([𝜆(𝜎0

𝑣 , 𝜎𝑣) 𝜎𝑏 . 𝜎0

𝑣 = 𝜎𝑣 ∧ 𝑅(𝜎𝑣 , 𝜎𝑏)], 𝑅′, 𝐴, 𝛾, 𝛾′) (sim. of remcheck 𝐴)(
simΓ𝑏 (𝑅′, [𝜆(_, 𝜎𝑣) 𝜎𝑏 . 𝑅′′(𝜎𝑣 , 𝜎𝑏)], Succ2 ,𝜆_. ⊥, 𝛾′, 𝛾′′) ∨
bSimΓ𝑏 (𝑅, 𝑅′′, 𝛾, 𝛾′′)

) (
continue with

previous Viper state

)
(assert-sim)

stmSimΓ𝑣 ,Γ𝑏 (𝑅, 𝑅′′, assert 𝐴, 𝛾, 𝛾′′)

Succ2 ≜ 𝜆(𝜎0

𝑣 , 𝜎𝑣) (_, 𝜎′
𝑣). 𝜎′

𝑣 = 𝜎0

𝑣 ∧ 𝜎0

𝑣 ⊢ ⟨𝐴, 𝜎0

𝑣⟩ →rc N(𝜎𝑣)

Figure 3.17: Rule for the simulation of assert 𝐴. bSim is defined in Figure 3.15.

In the second premise of assert-sim, the first disjunct models a Viper

effect which resets the Viper state reached after a successful remcheck 𝐴

operation (modelled in the first premise) to the state before the remcheck 𝐴

operation was executed. This effect is captured in the success predicate

Succ2 by using the same observation as in rule exh-sim: the permission

definedness state at the end of the remcheck operation is the same as

the state before the remcheck operation. This state resetting effect models

the semantics of a successful assert 𝐴 operation, whose resulting state

is given by the initial state. The second premise’s second disjunct states

that alternatively the Boogie code could simulate Viper executions after
assert 𝐴 (i. e. from the output Boogie program point 𝛾′′

onwards)

by taking steps in the Boogie program from the initial program point

𝛾 to the output program point 𝛾′′ while still being related to the Viper
state before the assert 𝐴 operation. This second disjunct is expressed

via the bSim simulation instantiation, where the Viper state remains

unchanged. Intuitively, the second disjunct expresses that the Boogie code

need not simulate resetting the Viper state after successfully simulating

remcheck 𝐴via some execution, if there is a potentially different execution

that reaches the output Boogie program point 𝛾′′
and that captures the

same Viper state as before the assert operation.

assert-sim is abstract enough to capture all three translations of assert

that we discussed in Subsection 3.3.2 (Figure 3.10 on page 126 illustrates

the translations), which illustrates the diversity of translations that can

be captured by our technique. For the first two translations (on the left

and in the middle in Figure 3.10), the second premise’s first disjunct

justifies resetting the Viper state after the remcheck operation. In the first

translation, the state reset is implicit in the Boogie code (i. e. there is no

Boogie command for resetting the state), which means no steps need

to be taken in the Boogie code, but the state relation still changes from

𝑅′
to 𝑅 to reflect that, at the end, the Boogie variables H and M capture

the Viper heap and Viper permission mask, respectively. In the second

translation, the state reset is done explicitly via assignments. For the third

translation (on the right of Figure 3.10), the first disjunct is not applicable,

because every Boogie execution that simulates the remcheck operation

stops right after due to the assume false command. Instead, the second

premise is able to justify the the third translation: Boogie executions

that do not go into the then-branch simulate Viper executions after the

assert statement.

Finally, note that the success predicate Succ2 in assert-sim contains

the same contextual information as in the rule for exhale: that is, the

reduction state 𝜎𝑣 can be reached by reducing remcheck 𝐴 from the

permission definedness state. This information is required to justify the

3.4. A Forward Simulation Methodology for Front-End Translations 147

wfSimΓ𝑏 (𝑅, 𝑅, 𝑒 , 𝛾, 𝛾′) (receiver well-defined)

simΓ𝑏 (𝑅, 𝑅, Succ, Fail, 𝛾′, 𝛾′′) (sufficient permission to read) (field-wf-sim)
wfSimΓ𝑏 (𝑅, 𝑅, 𝑒. 𝑓 , 𝛾, 𝛾′′)

Succ ≜ 𝜆(𝜎0

𝑣 , 𝜎𝑣)(𝜎1

𝑣 , 𝜎
′
𝑣). (𝜎0

𝑣 , 𝜎𝑣) = (𝜎1

𝑣 , 𝜎
′
𝑣) ∧ ∃𝑎. 𝜎0

𝑣 ⊢ ⟨𝑒 , 𝜎𝑣⟩ ⇓v V(VRefVal(Address(𝑎))) ∧Π(𝜎0

𝑣)(𝑎, 𝑓) > 0

Fail ≜ 𝜆(𝜎0

𝑣 , 𝜎𝑣). ∃𝑟. 𝜎0

𝑣 ⊢ ⟨𝑒 , 𝜎𝑣⟩ ⇓v V(VRefVal(𝑟)) ∧ (𝑟 = Null ∨ ∃𝑎. 𝑟 = Address(𝑎) ∧Π(𝜎0

𝑣)(𝑎, 𝑓) = 0)

wfSimListΓ𝑏 (�̂�, �̂�, [𝑒 , 𝑒′], 𝛾, 𝛾1) (receiver and RHS well-defined)

simΓ𝑏 (�̂�, �̂�, Succ2 , Fail2 , 𝛾1 , 𝛾2) (sufficient permission to write)

simΓ𝑏 (𝑅, 𝑅, Succ3 ,𝜆_. ⊥, 𝛾2 , 𝛾′) (heap update) (field-assign-sim)
stmSimΓ𝑣 ,Γ𝑏 (𝑅, 𝑅, 𝑒. 𝑓 := 𝑒′, 𝛾, 𝛾′)

�̂� = 𝜆(𝜎0

𝑣 , 𝜎𝑣) 𝜎𝑏 . 𝜎0

𝑣 = 𝜎𝑣 ∧ 𝑅(𝜎𝑣 , 𝜎𝑏)
Succ2 ≜ 𝜆(𝜎0

𝑣 , 𝜎𝑣)(𝜎1

𝑣 , 𝜎
′
𝑣). (𝜎0

𝑣 , 𝜎𝑣) = (𝜎1

𝑣 , 𝜎
′
𝑣) ∧ ∃𝑎. 𝜎0

𝑣 ⊢ ⟨𝑒 , 𝜎𝑣⟩ ⇓v V(VRefVal(Address(𝑎))) ∧Π(𝜎0

𝑣)(𝑎, 𝑓) = 1

Fail2 ≜ 𝜆(𝜎0

𝑣 , 𝜎𝑣). ∃𝑟. 𝜎0

𝑣 ⊢ ⟨𝑒 , 𝜎𝑣⟩ ⇓v V(VRefVal(𝑟)) ∧ (𝑟 = Null ∨ ∃𝑎. 𝑟 = Address(𝑎) ∧Π(𝜎0

𝑣)(𝑎, 𝑓) < 1)

Succ3 ≜ 𝜆𝜎𝑣 𝜎′
𝑣 . ∃𝑎 𝑣.

©«
𝜎′
𝑣 = (ST(𝜎𝑣),H(𝜎𝑣)((𝑎, 𝑓) ↦→ 𝑣),Π(𝜎𝑣)) ∧

𝜎𝑣 ⊢ ⟨𝑒 , 𝜎𝑣⟩ ⇓v V(VRefVal(Address(𝑎))) ∧ 𝜎𝑣 ⊢ ⟨𝑒′, 𝜎𝑣⟩ ⇓v V(𝑣) ∧
Π(𝜎𝑣)(𝑎, 𝑓) = 1 ∧ Fields(Γ𝑣)(𝑓) = typVpr(𝑣)

ª®¬
Figure 3.18: Simulation rules for the well-definedness of a field access and for the execution of a field

assignment. Note that here the input and output state relations in the conclusion are the same; one could

generalise the rules to allow them to be different.

existing translation of assert 𝐴 in the case when 𝐴 has no accessibility

predicates, which is different from the case when 𝐴 has accessibility

predicates.

Both rules presented so far showcase our decomposition into smaller

simulations and the genericity of the rules in terms of the state relation

and the simulating Boogie code (both of which are parameters). These

properties are a recurrent theme in our rules. For two more examples,

consider the simulation rules shown in Figure 3.18: rule field-wf-sim han-

dles the well-definedness of a field access and field-assign-sim handles a

field assignment. Both rules decompose the simulation similarly: the well-

definedness of subexpressions and the check for sufficient permissions

are handled in separate simulations. The rule for the field assignment

additionally models the simulation of a Viper heap update. The check

for sufficient permissions and the Viper heap update simulation are two

further examples for custom instantiations that are not defined directly

via Viper’s reduction judgements. Moreover, both rules use contextual

information in the simulations specified in the premises of the rules,

such as the receiver being well-defined. Finally, as in our previous rules,

these rules abstract over how Boogie encodes the separate effects, which

makes the rules applicable to diverse translations.

148 3. Formally Validating Translations into an Intermediate Verification Language

wfSimListΓ𝑏 (𝑅, 𝑅, [𝑒 , 𝑒𝑝], 𝛾, 𝛾1) (subexpression well-definedness)

∀𝑟, 𝑝. simΓ𝑏 (𝑅, 𝑅𝐵(𝑟, 𝑝), Succ𝐴(𝑟, 𝑝), Fail𝐴(𝑟, 𝑝), 𝛾1 , 𝛾2) (non-failure check)

∀𝑟, 𝑝. simΓ𝑏 (𝑅𝐵(𝑟, 𝑝), 𝑅′, Succ𝐵(𝑟, 𝑝), (𝜆_. ⊥), 𝛾2 , 𝛾′) (state update) (racc-sim)
rcSimΓ𝑏 (𝑅, 𝑅′, acc(𝑒. 𝑓 , 𝑒𝑝), 𝛾, 𝛾′)

Succ𝐴(𝑟, 𝑝) ≜
(
𝜆(𝜎0

𝑣 , 𝜎𝑣) (𝜎1

𝑣 , 𝜎
′
𝑣).

exhAccSucc(𝑟, 𝑝, 𝜎𝑣) ∧ (𝜎0

𝑣 , 𝜎𝑣) = (𝜎1

𝑣 , 𝜎
′
𝑣) ∧

wfAccSucc(𝑒 , 𝑒𝑝 , 𝑟 , 𝑝, 𝜎0

𝑣)

)
Fail𝐴(𝑟, 𝑝) ≜ 𝜆(𝜎0

𝑣 , 𝜎𝑣). ¬exhAccSucc(𝑟, 𝑝, 𝜎𝑣) ∧ wfAccSucc(𝑒 , 𝑒𝑝 , 𝑟 , 𝑝, 𝜎0

𝑣)

Succ𝐵(𝑟, 𝑝) ≜
(
𝜆(𝜎0

𝑣 , 𝜎𝑣) (𝜎1

𝑣 , 𝜎
′
𝑣).

𝜎′
𝑣 = rem(𝜎𝑣 , 𝑟 , 𝑓 , 𝑝) ∧ 𝜎0

𝑣 = 𝜎1

𝑣 ∧
exhAccSucc(𝑟, 𝑝, 𝜎𝑣) ∧ wfAccSucc(𝑒 , 𝑒𝑝 , 𝑟 , 𝑝, 𝜎𝑣)

)
wfAccSucc(𝑒 , 𝑒𝑝 , 𝑟 , 𝑝, (𝜎0

𝑣 , 𝜎𝑣)) ≜ 𝜎0

𝑣 ⊢ ⟨𝑒 , 𝜎𝑣⟩ ⇓v V(𝑟) ∧ 𝜎0

𝑣 ⊢ ⟨𝑒𝑝 , 𝜎𝑣⟩ ⇓v V(𝑝)

Figure 3.19: Rule for the simulation of remcheck acc(𝑒. 𝑓 , 𝑒𝑝). The definition of exhAccSucc is given in Figure 3.8

on page 116.

Additional parameterisation for state relations and success predicates

in rules

In all the rules presented so far, the different premises of rules modelling

simulations of Viper effects use only state relations and success predicates

that are parametric w.r.t. their standard input parameters, i. e. the Viper

and Boogie state for the state relation, and the input and output Viper

state of the simulated Viper effect for the success predicate. However,

there are cases where it is beneficial or even necessary for state relations

and success predicates to depend on further parameters.

As an example, consider the rule racc-sim in Figure 3.19, which decom-

poses the simulation of remcheck acc(𝑒. 𝑓 , 𝑒𝑝) into the simulation of three

separate Viper effects: (1) the well-definedness check of the receiver 𝑒 and

permission expression 𝑒𝑝 (via the wfSimList instantiation from Figure 3.14

on page 141), (2) a check exhAccSucc ensuring that the operation will not

fail (from the semantics; see Figure 3.8 on page 116), and (3) the actual

update of the Viper state, which removes the permission.

Note that 𝑅𝐵, Succ𝐴, Succ𝐵 are parameterised by a reference value 𝑟 and

a permission value 𝑝, where 𝑟 and 𝑝 model the values that the receiver 𝑒

and the permission expression 𝑒𝑝 evaluate to in the cases when 𝑒 and

𝑒𝑝 are well-defined. 𝑅𝐵 maps such values to a state relation. Succ𝐴 and

Succ𝐵 map such values to a success predicate. 𝑟 and 𝑝 are universally

quantified in the premises, and constrained by the success predicates.

This setup permits in particular 𝑅𝐵 to directly talk about the values that

𝑒 and 𝑒𝑝 evaluate to as specified by the success and failure predicates,

which makes it make more convenient to prove the premises for concrete

Boogie encodings. This is particularly useful for justifying cases where

the simulation of the non-failure check establishes a property on 𝑟 or 𝑝,

which is then used in the simulation of the state update. For example, the

existing Viper-to-Boogie translation stores 𝑝 into a temporary variable

that is used for both the non-failure check and the state update (see line 11

in Figure 3.9 on page 124).

Without this additional parameterisation, the success predicate would

existentially quantify over 𝑟 and 𝑝, and an instantiation of the state

3.4. A Forward Simulation Methodology for Front-End Translations 149

relation would have to express 𝑟 and 𝑝 explicitly via the Viper expression

evaluation judgement. As a result, a client of the rule proving the

premises for a concrete Boogie encoding would have to use that the

expression evaluation is deterministic in order to link the existentially

quantified 𝑟 and 𝑝 in the success predicate with the corresponding

reference and permission values used in the instantiated state relation.

Our parameterisation of the state relation avoids this technical overhead,

which makes it make more convenient to prove the premises for concrete

Boogie encodings.

Let us take a closer look at other parts of the rule. The second premise

includes contextual information, namely the conjunct wfAccSucc express-

ing that 𝑒 and 𝑒𝑝 are well-defined (which is ensured by the first premise)

and evaluate to the reference value 𝑟 and permission value 𝑝. The third

premise modelling the removal of the permission includes the same

conjunct and that the operation will succeed (exhAccSucc). Without

the latter, we could not prove in general that the resulting Boogie state

satisfies crucial invariants, for instance, that none of the permissions

stored in the Boogie state are negative. Again, we are agnostic as to

syntactically how this is achieved by this check: our rule does not require

the Boogie program to emit an explicit Boogie assert command checking

that the permission is nonnegative. This is important, since the existing

implementation omits such a command, for example, if the permission

is expressed via the literal write (i. e. full permission).

The extra parameterisation that we discussed in the simulation rule for

remcheck acc(𝑒. 𝑓 , 𝑒𝑝) made the rule more convenient to use but was not

technically necessary. However, there are cases where the parameterisa-

tion is necessary to express a suitable simulation rule. One such example

is the simulation rule for method calls. Before we show this rule, let us

first look at a simpler example that captures the essence of this second

extra parameterisation use case.

In particular, let us revisit the rule assert-sim for the simulation of

assert 𝐴 shown in Figure 3.17 on page 146 for the purposes of illustrating

the second extra parameterisation case. In assert-sim, the second premise’s

first disjunct must somehow recover the Viper state 𝜎init
𝑣 before the assert

operation was executed (i. e. before the remcheck effect modelled in the

first premise) in order to express the Viper effect that resets the state

back to 𝜎init
𝑣 . The first disjunct recovers 𝜎init

𝑣 by observing that 𝜎init
𝑣 must

be the same as the permission definedness state 𝜎0

𝑣 at the end of the

remcheck effect modelled in the first premise. This observation holds

because of the semantics of remcheck. If this observation did not hold,

because, for example, the permission definedness state changed during

the reduction of remcheck, then one would not be able to recover 𝜎init
𝑣

in the first disjunct’s success predicate without any further adjustments,

and thus would not be able to express a precise rule for the simulation

of assert 𝐴. How would we write the rule for simulating assert 𝐴 in

such a case? (For our generation of certificates, we use the original rule

assert-sim for the simulation of assert 𝐴; we are answering this question

for the purpose of illustrating the second extra parameterisation case

before showing the simulation rule for method calls, which requires this

parameterisation.)

Figure 3.20 provides an answer via an alternative rule assert-alt-sim for

150 3. Formally Validating Translations into an Intermediate Verification Language

bSimΓ𝑏 (𝑅,𝜆𝜎𝑣 𝜎𝑏 . (𝑅𝐴(𝜎𝑣))(𝜎𝑣 , 𝜎𝑏), 𝛾, 𝛾1)
∀𝜎init

𝑣 . rcSimΓ𝑏 ([𝜆(𝜎0

𝑣 , 𝜎𝑣) 𝜎𝑏 . 𝜎0

𝑣 = 𝜎𝑣 ∧ (𝑅𝐴(𝜎init
𝑣))(𝜎𝑣 , 𝜎𝑏)], 𝑅𝐵(𝜎init

𝑣), 𝐴, 𝛾1 , 𝛾2)(
(∀𝜎init

𝑣 . simΓ𝑏 (𝑅𝐵(𝜎init
𝑣), [𝜆(_, 𝜎𝑣) 𝜎𝑏 . 𝑅′(𝜎𝑣 , 𝜎𝑏)], Succ2(𝜎init

𝑣),𝜆_. ⊥, 𝛾2 , 𝛾′)) ∨
bSimΓ𝑏 (𝑅, 𝑅′, 𝛾, 𝛾′)

)
(assert-alt-sim)

stmSimΓ𝑣 ,Γ𝑏 (𝑅, 𝑅′, assert 𝐴, 𝛾, 𝛾′)

Succ2(𝜎init
𝑣) ≜ 𝜆(_, 𝜎𝑣) (_, 𝜎′

𝑣). 𝜎′
𝑣 = 𝜎init

𝑣 ∧ 𝜎init
𝑣 ⊢ ⟨𝐴, 𝜎init

𝑣 ⟩ →rc N(𝜎𝑣)

Figure 3.20: Alternative rule for the simulation of assert 𝐴. The differences compared to the original

rule assert-sim in Figure 3.17 are highlighted. bSim is defined in in Figure 3.15.

the simulation of assert, which does not rely on remcheck leaving the

permission definedness state unchanged. The key idea in assert-alt-sim is

to add an additional parameter to the state relation and success predicate

where this parameter models the state 𝜎init
𝑣 before the assert operation.

Succ2 expresses resetting the Viper state in the success predicate simply

by stating that the output Viper state 𝜎′
𝑣 matches 𝜎init

𝑣 ; the permission

definedness state is completely ignored in the success predicate.

The first premise in assert-alt-sim captures the state 𝜎init
𝑣 before the

assert operation in the state relation using 𝑅𝐴, which is a function from

the extra parameter state to a state relation. The second premise and the

first disjunct of the third premise are analogous to the premises in the

original rule. The only difference is the universal quantification over the

extra state parameter 𝜎init
𝑣 . Intuitively, the universal quantification in the

second premise expresses that the simulation must preserve any state that

was initially captured in the state relation. The universal quantification

in the third premise expresses that for any captured state, the Boogie

code must simulate a reset to this state. If 𝑅𝐴 and 𝑅𝐵 did not have an

extra parameter modelling 𝜎init
𝑣 , then there would be no way of explicitly

capturing 𝜎init
𝑣 in instantiations of the state relation, and thus one would

not be able to prove the simulation of resetting the Viper state to 𝜎init
𝑣 for

concrete Boogie encodings.

Let us now turn our attention to the rule mcall-sim in Figure 3.21 for the

simulation of a method call zs := 𝑚(es), which uses a similar extra param-

eterisation pattern to the above alternative simulation rule for assert.

At a high level, mcall-sim decomposes the simulation into the simulation

of the well-definedness of the arguments es (wfSimListΓ𝑏 (𝑅, 𝑅, es, 𝛾, 𝛾1))
and into the simulation of following effects which closely follow the

formal semantics definition (see stmt-mcall in Figure 3.5 on page 113): (S1)

changing the Viper store to capture the mapping from the callee’s formal

arguments to the argument values (modelled by Succ1), (S2) exhaling the

callee’s precondition, (S3) nondeterministically assigning values to the

target variables (modelled by Succ3), (S4) inhaling the callee’s postcon-

dition, and (S5) resetting the store to the one before the call where the

target variables are updated to the nondeterministically assigned values

(modelled by Succ5).

The key point is that expressing the final effect (i. e. resetting the store)

requires knowledge of the store as it was before the call. As a result, the

rule parameterises state relations and success predicates in the rule

with the extra parameter 𝜎∗
𝑣 , which models the state before the call.

3.4. A Forward Simulation Methodology for Front-End Translations 151

Methods(Γ𝑣)(𝑚) = mdecl
wfSimListΓ𝑏 (𝑅, 𝑅, es, 𝛾, 𝛾1)

∀𝜎∗
𝑣 𝜎∗

𝑏
vs vs′. 𝑅(𝜎∗

𝑣 , 𝜎
∗
𝑏
) ∧ PremsΓv(𝜎∗

𝑣 , mdecl, vs, vs′) =⇒©«
simΓ𝑏 (𝜆𝜎𝑣 𝜎𝑏 . (𝜎𝑣 , 𝜎𝑏) = (𝜎∗

𝑣 , 𝜎
∗
𝑏
), 𝑅2(𝜎∗

𝑣 , 𝜎
∗
𝑏
), Succ1 ,𝜆_. ⊥, 𝛾1 , 𝛾2) ∧

stmSimΓ𝑣 ,Γ𝑏 (𝑅2(𝜎∗
𝑣 , 𝜎

∗
𝑏
), 𝑅3(𝜎∗

𝑣 , 𝜎
∗
𝑏
), exhale pre(mdecl), 𝛾2 , 𝛾3) ∧

simΓ𝑏 (𝑅3(𝜎∗
𝑣 , 𝜎

∗
𝑏
), 𝑅4(𝜎∗

𝑣 , 𝜎
∗
𝑏
), Succ3(𝜎∗

𝑣),𝜆_. ⊥, 𝛾3 , 𝛾4) ∧
stmSimΓ𝑣 ,Γ𝑏 (𝑅4(𝜎∗

𝑣 , 𝜎
∗
𝑏
), 𝑅5(𝜎∗

𝑣 , 𝜎
∗
𝑏
), inhale post(mdecl), 𝛾4 , 𝛾5) ∧

simΓ𝑏 (𝑅5(𝜎∗
𝑣 , 𝜎

∗
𝑏
), 𝑅′, Succ5(𝜎∗

𝑣),𝜆_. ⊥, 𝛾5 , 𝛾′)

ª®®®®®¬
(S1)

(S2)

(S3)

(S4)

(S5)

(mcall-sim)
stmSimΓ𝑣 ,Γ𝑏 (𝑅, 𝑅′, zs := 𝑚(es), 𝛾, 𝛾′)

PremsΓv(𝜎∗
𝑣 , mdecl, vs, vs′) ≜ ©«

𝜎∗
𝑣 ⊢ ⟨es, 𝜎∗

𝑣⟩ [⇓]v V(vs) ∧ map(𝜆𝑣. typVpr(𝑣), vs) = argTypes(mdecl) ∧
map(𝜆𝑧.Vars(Γ𝑣)(𝑧), zs) = retTypes(mdecl) ∧
map(𝜆𝑣. typVpr(𝑣), vs′) = retTypes(mdecl)

ª®¬
Succ1 ≜ 𝜆𝜎𝑣 𝜎′

𝑣 . 𝜎
′
𝑣 = (xs [↦→] vs,H(𝜎𝑣),Π(𝜎𝑣))

Succ3(𝜎∗
𝑣) ≜ 𝜆𝜎𝑣 𝜎′

𝑣 .

(
𝜎′
𝑣 = (xs@ys [↦→] vs@vs′,H(𝜎𝑣),Π(𝜎𝑣)) ∧

Γ𝑣 ⊢ ⟨exhale pre(mdecl), (xs [↦→] vs,H(𝜎∗
𝑣),Π(𝜎∗

𝑣))⟩ →v N(𝜎𝑣)

)
Succ5(𝜎∗

𝑣) ≜ 𝜆𝜎𝑣 𝜎′
𝑣 .

(
𝜎′
𝑣 = (ST(𝜎∗

𝑣)(zs[↦→]vs′),H(𝜎𝑣),Π(𝜎𝑣)) ∧
(∃𝜎pre

𝑣 . Γ𝑣 ⊢ ⟨inhale post(mdecl), (xs@ys [↦→] vs@vs′,H(𝜎pre
𝑣),Π(𝜎pre

𝑣))⟩ →v N(𝜎𝑣))

)
Figure 3.21: Simulation rule for method calls. Here, xs are the formal arguments and ys are the formal target

variables in the method declaration mdecl. The term xs@ys denotes the list obtained by appending lists xs
and ys. The term xs[↦→]vs denotes the mapping where the 𝑖-th element in xs is mapped to the 𝑖-th element in

vs. The term ST(𝜎∗
𝑣)(zs[↦→]vs′) is a mapping that maps any element 𝑥 not in zs to ST(𝜎∗

𝑣)(𝑥) and maps any

element 𝑧 in zs to (zs[↦→]vs′)(𝑧).

Additionally, for the convenience of clients proving premises of the rules

for concrete Boogie encodings, the rule also adds the Boogie state 𝜎∗
𝑏

after the well-definedness check of expressions as an extra parameter

for the state relations. This way clients can choose to capture properties

in the state relation directly via 𝜎∗
𝑏

and prove that this corresponds to

capturing a property of 𝜎∗
𝑣 . For instance, when applying the rule as part

of the certificate generation, we track in the parameterised state relations

that the Boogie state maps Boogie variables capturing Viper variables in

scope before the call to the same value as 𝜎∗
𝑏

(i. e. these variables are not

affected by the encoding of the call).

Note that as with most of our simulation rules, mcall-sim contains

contextual information for various of the simulations in the premise.

For instance, the effect that nondeterministically assigns values for the

target variables (modelled by Succ3) includes that the prior state can

be reached by exhaling the callee’s precondition. As we will discuss

in Subsection 3.5.3, we use this contextual information to justify why

omitting well-definedness checks in the postcondition is fine. Finally, the

left-hand side of the rule’s third premise provides all the information

that one gets for any reduction of the method call where the arguments

are well-defined (e.g. that the argument values have the types declared

in the callee’s method signature).

152 3. Formally Validating Translations into an Intermediate Verification Language

rcInvSim𝑄
Γ𝑏
(𝑅, 𝑅′, 𝐴1 , 𝛾, 𝛾′) rcInvSim𝑄

Γ𝑏
(𝑅′, 𝑅′′, 𝐴2 , 𝛾′, 𝛾′′)

∀𝜎0

𝑣 , 𝜎𝑣 . 𝑄(𝐴1 && 𝐴2 , (𝜎0

𝑣 , 𝜎𝑣)) ⇒
(
𝑄(𝐴1 , (𝜎0

𝑣 , 𝜎𝑣)) ∧
∀𝜎′

𝑣 . 𝜎
0

𝑣 ⊢ ⟨𝐴1 , 𝜎𝑣⟩ →rc N(𝜎′
𝑣) ⇒ 𝑄(𝐴2 , (𝜎0

𝑣 , 𝜎
′
𝑣))

)
(rsep-sim)

rcInvSim𝑄
Γ𝑣
(𝑅, 𝑅′′, 𝐴1 && 𝐴2 , 𝛾, 𝛾

′′)

rcInvSim𝑄
Γ𝑏
(𝑅, 𝑅′, 𝐴, 𝛾, 𝛾′) ≜ rcSimΓ𝑏 ((𝜆𝜏 𝜎𝑏 . 𝑅(𝜏, 𝜎𝑏) ∧𝑄(𝐴, 𝜏)), 𝑅′, 𝐴, 𝛾, 𝛾′)

Figure 3.22: The instantiation for simulating remcheck 𝐴 with assertion predicate 𝑄 (bottom) and the

corresponding rule for the separating conjunction (top).

3.4.5. Injecting Non-Local Hypotheses into Simulation

Proofs

Our rules are designed to be parametric in the state relation between

the Viper and Boogie state and permit adjusting this state relation at

different points in the simulation proof (e.g. via the Boogie propagation

rule bprop in Figure 3.15). In principle, this allows the injection of arbitrary

non-locally-justified hypotheses into all of our simulation judgements.

However, automating the usage of general logical assumptions embedded

into our state relations can become a challenge in itself.

For example, the existing Viper-to-Boogie translation omits the well-

definedness checks of expressions in the translation of remcheck 𝐴

and inhale 𝐴 in certain cases (as we discussed in Subsection 3.3.3

on page 127). This is justified, because 𝐴 is checked to be well-formed
non-locally in those cases, but to use this additional hypothesis requires

propagating and adjusting the hypothesis throughout the cases of the

definitions of remcheck 𝐴 and inhale 𝐴. As a result, without additional

care, the automation of corresponding simulation proofs must explicitly

handle these adjustments of the state relation and must deal with a

variety of different state relations resulting from these adjustments. This

makes automation more challenging.

As a final ingredient of our methodology, we allow specialised instantia-

tions of the generic forward simulation judgement sim that encapsulate

these extra hypotheses via an additional parameter. This allows capturing

the property required to propagate the hypothesis separately via additional
premises in simulation rules. As a result, applications of the rule need

not adjust the state relation explicitly, and the specialised rule replaces

recurring adaptations and proof steps at the level of the state relation

by the justification of additional premises in the rules, which simplifies

automation.

For example, Figure 3.22 shows (at the bottom) an instantiation rcInvSim
of sim that expresses the simulation of remcheck 𝐴, parameterised with

an additional predicate 𝑄 on assertions. Its definition in terms of rcSim
requires 𝑄(𝐴, 𝜏) to hold as part of the input state relation, where 𝜏 is

a pair containing the permission definedness state and reduction state.

The specialised rule rsep-sim (top of Figure 3.22) for remcheck 𝐴1 && 𝐴2

decomposes the simulation into simulations for 𝐴1 and 𝐴2. Both sub-

simulations use the same predicate 𝑄, such that applications of the rule

do not need to adjust the state relations explicitly to reflect that, for

example, 𝑄 holds for 𝐴1 and 𝐴2 in the respective states. This property

3.4. A Forward Simulation Methodology for Front-End Translations 153

is ensured separately by the third premise. In practice, for a specific 𝑄,

we prove the third premise once and for all for all assertions 𝐴1 and 𝐴2,

which further simplifies automation. Note that the same parameter can

be instantiated in many ways to capture different non-local hypotheses

for different applications of the same rule.

Deriving rule rsep-sim

The rule rsep-sim can be derived from the instantiation-independent

composition rule comp and consequence rule conseq shown in Fig-

ure 3.15 on page 143, which shows another example for the usefulness

of our instantiation-independent rules. The proof works as follows

at a high level: The proof first applies the composition rule comp

where (1) the intermediate state relation is chosen to be the input

state relation of the second premise in rsep-sim if one unfolds the

definition of rcInvSim (that is, 𝜆𝜏 𝜎𝑏 . 𝑅2(𝜏, 𝜎𝑏) ∧ 𝑄(𝐴2 , 𝜏)), and (2)

the two pairs of success and failure predicates for the two simulations

being composed are chosen to express the simulation of remcheck 𝐴1

and remcheck 𝐴2, respectively. This application leads to four proof

goals (given by the instantiated premises of comp), where the two

proof goals constraining the two pairs of success and failure predi-

cates follow directly from the definition of remcheck. The remaining

two proof goals express the simulation of remcheck 𝐴1 (goal 1) and

remcheck 𝐴2 (goal 2), respectively. Goal 2 precisely matches the sec-

ond premise in rsep-sim, and thus is trivially proved. Goal 1 does not

match the first premise in rsep-sim, because both the input and output

state relations do not match. To bridge this gap, the proof applies the

consequence rule conseq to goal 1, which allows weakening the input

relation and strengthening the output relation to reduce goal 1 to the

first premise in rsep-sim. The weakening and strengthening conditions

imposed by conseq are justified by the final premise in rsep-sim.

In our formalisation, we express all of our simulation rules directly

via rcInvSim instead of rcSim. In the case where we do not need to

propagate additional hypotheses via a separate predicate, we instantiate

the predicate 𝑄 in rcInvSim using the trivial predicate that always holds

(i. e. 𝑄(𝐴, (𝜎0

𝑣 , 𝜎𝑣)) = ⊤). This way we need only one set of rules, and

thus only one certification strategy for simulations of remcheck, which

leads to a uniform approach. Our certification strategy takes as input

some parameters that are instantiated in different ways for different

translations of remcheck (e.g. a parameter specifying how to instantiate

𝑄), but most of the steps in our strategy are independent from these

parameters. As a result, we need to maintain only one certification strategy

for remcheck instead of two completely separate certification strategies

for the two translations (i. e. the translation that omits well-definedness

checks of expressions and the one that does not). This becomes even more

important as one must support more alternatives justified by non-local

checks or adds support for additional features that must be taken into

account by the certification strategy.

Figure 3.23 shows a selection of rules that are all directly defined in terms

of rcInvSim. The rule exh2-sim for the simulation of exhale 𝐴 is the same

as the one we initially showed in Figure 3.16 on page 145, except that

now the additional predicate 𝑄 is included and there is an additional

154 3. Formally Validating Translations into an Intermediate Verification Language

∀𝜎𝑣 𝜎𝑏 . 𝑅(𝜎𝑣 , 𝜎𝑏) =⇒ 𝑄(𝐴, (𝜎𝑣 , 𝜎𝑣))
rcInvSim𝑄

Γ𝑏
([𝜆(𝜎0

𝑣 , 𝜎𝑣) 𝜎𝑏 . 𝜎0

𝑣 = 𝜎𝑣 ∧ 𝑅(𝜎𝑣 , 𝜎𝑏)], 𝑅′, 𝐴, 𝛾, 𝛾′) (sim. of remcheck 𝐴)
simΓ𝑏 (𝑅′, [𝜆(_, 𝜎𝑣) 𝜎𝑏 . 𝑅′′(𝜎𝑣 , 𝜎𝑏)], Succ2 ,𝜆_. ⊥, 𝛾′, 𝛾′′) (non-det. selection) (exh2-sim)

stmSimΓ𝑣 ,Γ𝑏 (𝑅, 𝑅′′, exhale 𝐴, 𝛾, 𝛾′′)

wfSimListΓ𝑏 (𝑅acc , 𝑅acc , [𝑒 , 𝑒𝑝], 𝛾, 𝛾1)
∀𝑟, 𝑝. simΓ𝑏 (𝑅acc , 𝑅𝐵(𝑟, 𝑝), Succ𝐴(𝑟, 𝑝), Fail𝐴(𝑟, 𝑝), 𝛾1 , 𝛾2) (non-failure check)

∀𝑟, 𝑝. simΓ𝑏 (𝑅𝐵(𝑟, 𝑝), 𝑅′, Succ𝐵(𝑟, 𝑝), (𝜆_. ⊥), 𝛾2 , 𝛾′) (state update) (racc2-sim)
rcInvSim𝑄

Γ𝑏
(𝑅, 𝑅′, acc(𝑒. 𝑓 , 𝑒𝑝), 𝛾, 𝛾′)

𝑅acc ≜ 𝜆𝜏 𝜎𝑏 . 𝑅(𝜏, 𝜎𝑏) ∧𝑄(acc(𝑒. 𝑓 , 𝑒𝑝), 𝜏)

wfSimΓ𝑏 (𝑅exp , 𝑅exp , 𝑒 , 𝛾, 𝛾′)
simΓ𝑏 (𝑅exp , 𝑅

′′, Succexp , Failexp , 𝛾′, 𝛾′′) (expression holds) (rexp-sim)
rcInvSim𝑄

Γ𝑣
(𝑅, 𝑅′′, 𝑒 , 𝛾, 𝛾′′)

𝑅exp ≜ 𝜆𝜏 𝜎𝑏 . 𝑅(𝜏, 𝜎𝑏) ∧𝑄(𝑒 , 𝜏)
Succexp ≜ 𝜆(𝜎0

𝑣 , 𝜎𝑣)(𝜎1

𝑣 , 𝜎
′
𝑣). (𝜎0

𝑣 , 𝜎𝑣) = (𝜎1

𝑣 , 𝜎
′
𝑣) ∧ 𝜎0

𝑣 ⊢ ⟨𝑒 , 𝜎𝑣⟩ ⇓v VBoolVal(true)
Failexp ≜ 𝜆(𝜎0

𝑣 , 𝜎𝑣). 𝜎0

𝑣 ⊢ ⟨𝑒 , 𝜎𝑣⟩ ⇓v VBoolVal(false)

wfSimΓ𝑏 (𝑅imp , 𝑅imp , 𝑒 , 𝛾, ([]; if (𝑒𝑏) { 𝑏 :: bs } else { [[]; 𝜖] },KSeq(𝑏′,K)))
expRelVprBoogieΓ𝑏 (𝑅, 𝑒, 𝑒𝑏)

rcInvSim𝑄
Γ𝑏
(𝑅, 𝑅, 𝐴, (𝑏, blocksToCont(bs,KSeq(𝑏′,K))), (𝑏′,K))

∀𝜎0

𝑣 , 𝜎𝑣 . 𝑄(𝑒 ⇒ 𝐴, (𝜎0

𝑣 , 𝜎𝑣)) ∧ 𝜎0

𝑣 ⊢ ⟨𝑒 , 𝜎𝑣⟩ ⇓v VBoolVal(true) =⇒ 𝑄(𝐴, (𝜎0

𝑣 , 𝜎𝑣)) (rimp-sim)
rcInvSim𝑄

Γ𝑣
(𝑅, 𝑅, 𝑒 ⇒ 𝐴, 𝛾, (𝑏′,K))

𝑅imp ≜ 𝜆𝜏 𝜎𝑏 . 𝑅(𝜏, 𝜎𝑏) ∧𝑄(𝑒 ⇒ 𝐴, 𝜏)

Figure 3.23: exhale simulation rule expressed via rcInvSim and selection of rules for the simulation of

remcheck using rcInvSim. Succ𝐴 and Succ𝐵 are defined in Figure 3.19. expRelVprBoogie relates a Viper and a

Boogie expression; we discuss this relation in more detail in Subsection 3.5.5.

premise requiring that the input state relation implies that the predicate

holds. The rule racc2-sim for remcheck acc(𝑒. 𝑓 , 𝑒𝑝) is essentially the

same as the one that we discussed earlier in Figure 3.19 on page 148 except

that the additional predicate parameter 𝑄 is made explicit in racc2-sim.

The rule rexp-sim for the Boolean expression case is straightforward.

The rule rimp-sim for the implication has one high-level difference to

the rest of the rules presented so far: the rule exposes some modest

implementation details, since the rule forces the Boogie program to

encode the Viper implication via an if-statement, where the implication’s

right-hand side must be simulated in the then-branch. We chose to prove

this rule because it was most convenient for our use case. However, it

would be straightforward to abstract this implementation detail away

as well to support more possible translations (e.g. to support a case that

omits the if-statement if the left-hand side is known to be true statically).

In such a more generic rule, one would add a premise for the case when

the left-hand side evaluates to false. Moreover, one would explicitly add

the condition specifying that the left-hand side evaluates to true (resp.

false) to the state relation in the premise simulating the remcheck of

the right-hand side (resp. simulating the case when the left-hand side

evaluates to false).

3.5. Putting The Methodology to Work 155

We proceed analogously for the simulation of inhale 𝐴. That is, we use

the following instantiation inhInvSim:

inhInvSim𝑄
Γ𝑏
(𝑅, 𝑅′, 𝐴, 𝛾, 𝛾′) ≜

inhSimΓ𝑏 (𝜆𝜎𝑣 𝜎𝑏 . 𝑅(𝜎𝑣 , 𝜎𝑏) ∧𝑄(𝐴, 𝜎𝑣), 𝑅′, 𝐴, 𝛾, 𝛾′)

Here, the extra predicate 𝑄 takes only one Viper state as input instead of

a pair, since the inhale reduction tracks only a single Viper state. As for

remcheck, we express all of our simulation rules directly via inhInvSim
instead of inhSim.

In summary, our methodology solves all three challenges outlined in Sec-

tion 3.1 and expanded on in Section 3.3. The large semantic gap between the

input language and the IVL is handled by decomposing the statements

of the input language into smaller effects and defining for each of them

instantiations of a generic forward simulation relation. The parameter-

isation of this relation allows us, in particular, to capture information

about the context in which the effects are executed. This parameterisa-

tion also supports diverse translations by abstracting from the details of

the translation. Finally, non-locality is handled by capturing properties

checked elsewhere in the state relations, and by devising specialised

rules that simplify the certificate generation. All of these ideas are needed

to validate the existing Viper-to-Boogie translation, but apply equally to

other front-end translations.

3.5. Putting The Methodology to Work

This section shows how to apply the general methodology that we

presented in Section 3.4 to concrete front-end translations in order

to automatically generate certificates, which can then be successfully

checked by Isabelle automatically . This section does so by presenting

key ingredients involved in an application to the existing Viper-to-Boogie

translation, but these could also be applied to other front-end translations.

In particular, this section presents our instantiation of the state relation

connecting Viper with Boogie states (Subsection 3.5.1), how we track

auxiliary Boogie variables (Subsection 3.5.2), a concrete instance of non-

local reasoning (Subsection 3.5.3), how our proof automation works

(Subsection 3.5.4), and how we automatically relate Viper and Boogie

expressions (Subsection 3.5.5). Finally, this section shows how to use

forward simulation proofs to generate a certificate proving soundness for

a concrete Viper program and its Boogie translation (Subsection 3.5.6).

3.5.1. State Relation

In order to use the rules from Section 3.4 for deriving forward simulation

judgements for concrete Viper and Boogie constructs, we must instantiate

the state relation between Viper and Boogie states. Moreover, the rules

from Section 3.4 allow us to adjust state relations as needed during

a simulation proof. Thus, it is possible to use different instantiations

of the state relation during a simulation proof. We use this flexibility

of adjusting the state relations in many ways, e.g. when (1) a scoped

156 3. Formally Validating Translations into an Intermediate Verification Language

SRTr,AV
Γ𝑣 ,Γ𝑏

((𝜎0

𝑣 , 𝜎𝑣), 𝜎𝑏) ≜ consistent(𝜎0

𝑣) ∧ consistent(𝜎𝑣) ∧ ST(𝜎0

𝑣) = ST(𝜎𝑣) ∧ H(𝜎0

𝑣) = H(𝜎𝑣) ∧
stRelΓ𝑏 (var(Tr), 𝜎𝑣 , 𝜎𝑏) ∧ hmRelΓ𝑣 ,Γ𝑏 (field(Tr),H(Tr),M(Tr), 𝜎𝑣 , 𝜎𝑏) ∧
hmRelΓ𝑣 ,Γ𝑏 (field(Tr),H0(Tr),M0(Tr), 𝜎0

𝑣 , 𝜎𝑏) ∧
fieldRelΓ𝑣 ,Γ𝑏 (field(Tr), 𝜎𝑏) ∧ constRepΓ𝑏 (const(Tr), 𝜎𝑏) ∧ (∀𝑥, 𝑃. AV(𝑥) = 𝑃 ⇒ 𝑃(𝜎𝑏(𝑥))) ∧
stateWellTy(TypeInterp(Γ𝑏), Vars(Γ𝑏), ∅, 𝜎𝑏) ∧
disjointList([{H(Tr),H0(Tr)}, {M(Tr),M0(Tr)}, ran(var(Tr)), ran(field(Tr)), range(const(Tr)), dom(AV)])

Figure 3.24: A simplified version of our instantiated state relation between Viper and Boogie states. disjointList
ensures that all the sets in a given list are pairwise disjoint. dom provides the domain of a partial function.

range and ran provide the range of a total and partial function, respectively.

Viper variable is introduced, (2) a new auxiliary Boogie variable is

introduced, (3) the Boogie variables tracking the Viper state are changed.

To have a systematic way of instantiating the state relation and facilitating

proof automation for handling state relation adjustments, we build in

a stylised form for expressing state relations via two parameters. The

first parameter is a partial auxiliary variable map from auxiliary Boogie

variables to predicates on Boogie values (mappings from Boogie values

to Booleans) stating what logical condition holds for the value stored

for an auxiliary Boogie variable (we will discuss concrete predicates

for auxiliary variables in Subsection 3.5.2). The second parameter is a

translation record specifying how key Viper components are represented

in the Boogie state. The scenarios above are handled by adjusting one of

these two parameters as we will show with concrete examples in later

parts of this section.

Translation records comprise: (1) a mapping var(Tr) from Viper variables

to their Boogie counterparts, (2) the Boogie variables H(Tr) and M(Tr)
representing the Viper heap and permission mask, respectively (and

whenever we use a separate permission definedness state, the Boogie

variables H0(Tr) and M0(Tr) representing the corresponding heap and

permission mask, respectively), (3) a mapping field(Tr) from Viper fields

to corresponding Boogie constants, and (4) a mapping const(Tr) from

expected constant identifiers to Boogie constants as represented in the

Boogie program.
17

17: In the existing Viper-to-Boogie trans-

lation for our supported Viper subset,

there are expected Boogie constant iden-

tifiers for the empty (0) permission value,

the full (1) permission value, the null ref-

erence, and the Boogie value represent-

ing the empty permission mask.

Figure 3.24 shows a simplified version of our state relation instantiation

SR for translation record Tr, auxiliary variable map AV, Viper context

Γ𝑣 , and Boogie context Γ𝑏 , where 𝜎𝑣 and 𝜎𝑏 are the Viper and Boogie

states, and 𝜎0

𝑣 is a distinguished Viper permission definedness state (if

there is none, then 𝜎𝑣 = 𝜎0

𝑣). The first line ensures that the Viper states

are consistent (i. e. there is at most 1 permission to each heap location)

and that the permission definedness state and the standard Viper state

differ at most on the permission mask. We use consistency, for example,

to justify why the assume GoodMask(M) Boogie command discussed

in Subsection 3.3.6 on page 132 executes normally instead of going to

magic (GoodMask(M) essentially requires the Viper permission mask to

be consistent due to a corresponding axiom). The second and third lines

ensure that the Boogie state correctly captures the Viper store (stRel),
Viper permission mask, and Viper heap (hmRel).

The next two lines ensure the remaining properties on the Boogie state that

3.5. Putting The Methodology to Work 157

we require for our generated certificates: (1) Viper fields are represented

correctly in the Boogie state (fieldRel), (2) expected Boogie constants

are correctly reflected in the Boogie state (constRep), which means, for

example, that the Boogie constant representing the full permission value

actually stores the value 1, (3) for each auxiliary variable-predicate pair

(𝑥, 𝑃) in the auxiliary variable map, 𝑃 holds for the value stored in the

Boogie state for 𝑥, and (4) the Boogie state is well-typed. We require the

well-typedness of the Boogie state to prove that certain Boogie expressions

reduce (using our type soundness result for Boogie expressions discussed

in Subsection 2.3.6 on page 35 in Chapter 2).

The final line ensures that Boogie variables modelling different aspects

of the encoding must be different. For example, the Boogie variable

H(Tr) representing the Viper heap should be different from any of the

auxiliary variables in the auxiliary variable map. The benefit of having

this property in the state relation is the following. If the Boogie program

updates a variable 𝑥 modelling one aspect in the state relation (via a

Boogie assignment), then we directly know that the conditions required

by the state relation must still hold for the variables modelling different

aspects than 𝑥. For example, if the Boogie program updates H(Tr) (e.g. to

reflect a Viper field assignment), then we know that all the predicates for

the tracked auxiliary variables must still hold without requiring further

checks. If one did not include the final line in the state relation, then one

would have to prove on every such update that the updated variable is

indeed different from all the variables tracking different aspects in the

state relation.

3.5.2. Dealing with Auxiliary Boogie Variables

We track Boogie variables explicitly in the auxiliary variable map of the

state relation whenever we need to track Boogie variables that are not

captured by any other part of the state relation. One such example is in

the existing Viper-to-Boogie translation for remcheck acc(𝑒. 𝑓 , 𝑒𝑝). Here,

the translated Boogie program stores the permission that is to be removed

into a temporary variable tmp and then uses tmp at different points later.

We track tmp in the auxiliary variable map in order to justify the points

where tmp is used. See an example translation of remcheck acc(𝑒. 𝑓 , 𝑒𝑝)
on lines 10-19 in Figure 3.9 on page 124, where tmp is set on line 11.

More concretely, in the simulation proof of remcheck acc(𝑒. 𝑓 , 𝑒𝑝), we

adjust the state relation from SRTr,AV
Γ𝑣 ,Γ𝑏

to SRTr,AV(tmp↦→𝜆𝑣. 𝑣=RealVal(𝑝))
Γ𝑣 ,Γ𝑏

as a

result of the Boogie assignment initialising tmp, where 𝑝 is the real value

that 𝑒𝑝 evaluates to.
18

In subsequent steps of the simulation proof, we 18: Recall that we can define the state

relation in terms of 𝑝 directly, since our

corresponding simulation rule racc-sim

in Figure 3.19 on page 148 parameterises

the state relation with 𝑝.

can then use the fact that tmp stores 𝑝. Once tmp is not used any more,

we revert the state relation back to SRTr,AV
Γ𝑣 ,Γ𝑏

.

A different example where we track variables in the auxiliary variable

map is to justify the translation of assert 𝐴. Recall that the existing

Viper-to-Boogie translation of assert 𝐴 works as follows (see the Boogie

encoding shown on the far left of Figure 3.10 on page 126): the current

Boogie variables H and M tracking the Viper heap and permission mask

are copied into unused Boogie variables aH and aM. Then, the remcheck 𝐴

operation is encoded w.r.t. aH and aM (leaving H and M unchanged), and

at the end, the encoding continues with the original variables H and

158 3. Formally Validating Translations into an Intermediate Verification Language

M. To justify the encoding of assert 𝐴, we need to prove that H and M

are indeed not modified by the encoding of remcheck 𝐴 such that we

can then prove that H and M model the correct (unchanged) heap and

permission mask after assert 𝐴. We achieve this by tracking H and M in

the auxiliary variable map during the simulation proof of remcheck 𝐴.

More concretely, in the simulation proof of remcheck 𝐴, as a result of the

two assignments to aH and aM, we adjust the state relation from SRTr,AV
Γ𝑣 ,Γ𝑏

to:
19

19: Note that here H and M correspond to

H(Tr) and M(Tr), respectively.

𝜆(𝜎0

𝑣 , 𝜎𝑣) 𝜎𝑏 . SRTr′ ,AV′

Γ𝑣 ,Γ𝑏
((𝜎0

𝑣 , 𝜎𝑣), 𝜎𝑏) where

Tr′ ≜ Tr(H ↦→ aH,M ↦→ aM)

AV′ ≜
(

AV(H ↦→ 𝜆ℎ𝑏 . heapRelΓ𝑏 (field(Tr), H,H(𝜎0

𝑣), ℎ𝑏))
(M ↦→ 𝜆𝑚𝑏 . maskRelΓ𝑏 (field(Tr), M,Π(𝜎0

𝑣), 𝑚𝑏))

)
So, the translation record is updated to reflect aH and aM to be the new

variables modelling the Viper heap and permission mask. Moreover,

the updated auxiliary variable map AV′
states that H and M are related

to the Viper heap and permission mask of the permission definedness

state 𝜎0

𝑣 (heapRel and maskRel are defined accordingly). As a result,

since the permission definedness state remains the same during the

reduction of remcheck 𝐴, the adjusted state relation tells us at the end

of the simulation of remcheck that H and M indeed still model the Viper

state before the assert statement. Therefore, after the simulation proof

of remcheck 𝐴, we can revert the state relation back to SRTr,AV
Γ𝑣 ,Γ𝑏

as part of

the Viper state reset effect modelled by the first disjunct in the second

premise of the rule assert-sim in Figure 3.17 on page 146.
20

20: The Viper state reset effect in assert-

sim explicitly states that the state is reset

to the permission definedness state and

thus we do not need to explicitly ensure

during the simulation proof that the per-

mission definedness state stays the same.

The remcheck simulation (rcSim) already

captures that the permission definedness

state stays the same in the success predi-

cate.

In our simulation proofs for method calls, we also use the auxiliary

variable map to prove that certain variables are not modified during

subsimulations (similarly to our approach for assert). In particular,

our method call rule mcall-sim (see Figure 3.21 on page 151) requires

us to prove simulations w.r.t. a Viper state whose store tracks only the

formal argument variables and formal target variables of the callee’s

method declaration; the final simulation premise in the rule then resets

the Viper store to the store before the call where the target variables

are adjusted accordingly. So, during the simulation proofs that deal

with Viper states tracking only the formal argument and formal target

variables, we must explicitly ensure that the Boogie variables qs modelling

the Viper store before the call are not modified. We achieve this by updating

the auxiliary variable map to include all variables qs before the call, where

the corresponding predicate for a variable 𝑞 in qs is that the value of 𝑞

in the current Boogie state is identical to the corresponding value in the

Boogie state 𝜎∗
𝑏

reached right before the code simulating the method call

(the rule mcall-sim provides 𝜎∗
𝑏

as a parameter to the intermediate state

relations).

Syntactic check for unmodified variables

As we showed, one use case for the auxiliary variable map is to prove

that certain variables are not modified during the simulation of some

Viper effect. It would be more convenient if we could instead just

syntactically check that the Boogie code simulating the Viper effect

3.5. Putting The Methodology to Work 159

does not modify the variables in question. This would avoid the need

to track these variables explicitly in the state relation during the Viper

effect. Doing so is not easily possible in our current setup because of

how the internal Boogie AST representation is structured, which we

discuss as part of future work in Subsection 3.9.4 on page 200.

3.5.3. Non-Locality

For most translations of remcheck 𝐴 and inhale 𝐴, the existing Viper-

to-Boogie translation generates well-definedness checks in the Boogie

program corresponding to expressions evaluated in 𝐴. However, as

discussed in Subsection 3.3.3 on page 127, specifically when translating

the remcheck of a method call’s precondition (as part of an exhale) and

the inhale of a method call’s postcondition, the existing translation

omits these well-definedness checks for the corresponding remcheck and

inhale operations. This optimisation is justified by a non-local check: the

Boogie code for the callee’s translation checks that the callee’s specification

is well-formed (see Definition 3.3.1 on page 129 for the specification well-

formedness definition), which implies that expressions evaluated during

the corresponding remcheck and inhale operations must be well-defined.

In Subsection 3.3.4 on page 128, we explained at a high level why this

non-local check justifies the optimisation performed by the existing Viper-

to-Boogie translation. In this subsection, we will make this justification

formal by showing how we establish the simulation of the remcheck and

inhale operations as part of calls.

Our standard simulation proof for remcheck 𝐴 and inhale 𝐴 would fail

if we did not reflect the consequences of this non-local guarantee, since

our standard simulation proof would expect expressions evaluated in 𝐴

to be checked to be well-defined. So, we must reflect the consequences

of this non-local guarantee in a way that is used automatically during the
proof. We instantiate the general strategy outlined in Subsection 3.4.5

on page 152 for this purpose, which allows us to choose a predicate

𝑄pre (resp. 𝑄post) on assertions (these predicates are functions from

assertions and Viper states to Booleans) that will be applied throughout

the simulation proof for remcheck 𝐴 (resp. inhale 𝐴). The idea is that

during the simulation proof we get the guarantee provided by 𝑄pre
in addition to the state relation between Viper and Boogie states. We

choose 𝑄pre (resp. 𝑄post) such that they capture the non-local guarantee

in a way that can be propagated through the simulation proofs for the

remcheck 𝐴 operation (resp. inhale 𝐴), and such that they guarantee

that expressions evaluated during these operations must be well-defined.

In the following, we first discuss our approach for remcheck and then

discuss our approach for inhale.

The remcheck case

Our general strategy in Subsection 3.4.5 requires choosing 𝑄pre such that

𝑄pre(𝐴, (𝜎0

𝑣 , 𝜎𝑣)) satisfies the following properties (𝐴 is an assertion, 𝜎0

𝑣

is the permission definedness state, and 𝜎𝑣 is the reduction state):

160 3. Formally Validating Translations into an Intermediate Verification Language

▶ (Property 1): 𝑄pre(𝐴, (𝜎𝑣 , 𝜎𝑣)) must be implied by the non-local

check and the state relation before the remcheck operation (i. e.
where 𝐴 is the callee’s precondition and 𝜎𝑣 is the state right before

the remcheck operation); this property is reflected in the first

premise of rule exh2-sim in Figure 3.23 on page 154.
21

21: Note that in rule exh2-sim, the non-

local guarantee must be embedded into

the state relation to satisfy the first

premise.

▶ (Property 2): 𝑄pre(𝐴, (𝜎0

𝑣 , 𝜎𝑣)) must imply that every definedness

subexpression 𝑒 of 𝐴 is well-defined (i. e. ¬(𝜎0

𝑣 ⊢ ⟨𝑒 , 𝜎𝑣⟩ ⇓v)).22

22: The function defineSubExprsA in Fig-

ure 3.6 on page 114 expresses the defined-

ness subexpressions of an assertion; if

a definedness subexpression of an as-

sertion is ill-defined in a state, then the

corresponding inhale and exhale fails

in that state.

▶ (Property 3): 𝑄pre(𝐴, (𝜎0

𝑣 , 𝜎𝑣)) must be preserved for subassertions

of 𝐴 that are reduced as part of the remcheck operation. By preser-

vation we mean the following: If 𝑄pre(𝐴, (𝜎0

𝑣 , 𝜎𝑣)) holds, then if

remcheck 𝐴′
(where 𝐴′

is a direct subassertion of 𝐴) is reduced

in reduction state 𝜎′
𝑣 as part of the reduction of remcheck 𝐴 in

permission definedness state 𝜎0

𝑣 and reduction state 𝜎𝑣 , then

𝑄(𝐴′, (𝜎0

𝑣 , 𝜎
′
𝑣)) must hold; the third premise of rsep-sim in Fig-

ure 3.22 on page 152 expresses this property for the separating

conjunction.

Note that (Property 2) and (Property 3) together ensure that𝑄pre(𝐴, (𝜎0

𝑣 , 𝜎𝑣))
implies that any expression evaluated in the reduction of remcheck 𝐴

must be well-defined.

We instantiate 𝑄pre with the following definition, which satisfies the three

properties:

𝑄pre(𝐴, 𝜎0

𝑣 , 𝜎𝑣) ≜ consistent(𝜎0

𝑣) ∧ ∃𝜎i
𝑣 . 𝜎𝑣 ⊕ 𝜎i

𝑣 ⪯ 𝜎0

𝑣 ∧ ¬⟨𝐴, 𝜎i
𝑣⟩ →inh F

Recall that ⟨𝐴, 𝜎𝑖
𝑣⟩ →inh 𝑟𝑣 expresses the reduction of inhale 𝐴 in state

𝜎𝑖
𝑣 to outcome 𝑟𝑣 . The symbol ⊕ is an addition operator that results in

a state whose permission mask is the pointwise sum of the two states

and whose store and heap is the same as in the input states; ⊕ is a partial

operation that is defined iff the two input states have the same store and

heap. 𝜎𝑣 ⪯ 𝜎′
𝑣 holds iff the permission mask of 𝜎′

𝑣 is pointwise larger

than the permission mask of 𝜎𝑣 , and the heap and store are identical.
23

23: The formal definition is 𝜎𝑣 ⪯ 𝜎′𝑣 ≜
∃𝜎′′𝑣 . 𝜎𝑣 ⊕ 𝜎′′𝑣 = 𝜎′𝑣 .

Our instantiation for 𝑄pre states three conditions. First, the permission

definedness state must be consistent, which clearly is always the case,

since our semantics ensures that every reached state is consistent (since

the initial state is consistent). Second, there must exist some state 𝜎i
𝑣

containing at most the permission difference between the reduction state

and permission definedness state. Third, an inhale starting from 𝜎i
𝑣

cannot fail.

Let us see why our instantiation for 𝑄pre satisfies the three required

properties, which will also provide an intuition for the instantiation itself.

Let us consider (Property 1) first. The well-formedness of the callee’s

specification (see Definition 3.3.1 on page 129), which is guaranteed by

the non-local check, ensures that an inhale of the precondition 𝐴pre does

not fail starting from any state. Moreover, since our usual state relation

(Figure 3.24 on page 156) ensures that the Viper state 𝜎𝑣 is consistent, we

get that our usual state relation and the non-local check together imply

𝑄pre(𝐴pre , (𝜎𝑣 , 𝜎𝑣)) for an empty 𝜎i
𝑣 (i. e. no permissions in 𝜎i

𝑣).
24

24: More concretely, in our proof, we

make sure that in our use of the

method call rule mcall-sim in Fig-

ure 3.21, our instantiation of 𝑅2 guar-

antees that 𝑅2(𝜎∗𝑣 , 𝜎∗𝑏)(𝜎𝑣 , 𝜎𝑏) implies

𝑄pre(𝐴, (𝜎𝑣 , 𝜎𝑣)) where 𝐴 is the callee’s

precondition, which then allows us to es-

tablish the first premise of rule exh2-sim

in Figure 3.23 on page 154.

Thus,

(Property 1) holds.

Let us consider (Property 2) next. From our instantiation of 𝑄pre we know

that there is a state 𝜎𝑖
𝑣 such that an inhale 𝐴 from 𝜎𝑖

𝑣 never fails. Thus, we

get that every definedness subexpression 𝑒 of 𝐴 is well-defined in 𝜎𝑖
𝑣 (i. e.

3.5. Putting The Methodology to Work 161

¬(𝜎𝑖
𝑣 ⊢ ⟨𝑒 , 𝜎𝑖

𝑣⟩ ⇓v)), because otherwise inhale 𝐴would fail in 𝜎𝑖
𝑣 due to

the rule inh-subexp-fail in Figure 3.7 on page 115. From this, we conclude

that (Property 2) holds. That is, every definedness subexpression 𝑒 of

𝐴 is well-defined in state 𝜎𝑣 with permission definedness state 𝜎0

𝑣 (i. e.
¬(𝜎0

𝑣 ⊢ ⟨𝑒 , 𝜎𝑣⟩ ⇓v)), because (1) 𝜎0

𝑣 has at least as many permissions as

𝜎𝑖
𝑣 , and (2) 𝜎𝑖

𝑣 and 𝜎𝑣 agree on the heap and store, and the evaluation of

subexpressions of specifications do not depend on the permission mask

in 𝜎𝑣 .
25

25: The evaluation of 𝑒 in 𝜎𝑣 with per-

mission definedness state 𝜎0

𝑣 depends

on the permission mask in 𝜎𝑣 iff 𝑒 con-

tains permission introspection. While we

currently do not support permission in-

trospection in our generated certificates,

the Viper language disallows permission

introspection in method specifications

except if inhale-exhale assertions are used,

which are not part of our Viper subset.

Showing (Property 3) is the most challenging part, namely showing

that 𝑄pre is preserved for direct subassertions of 𝐴 that are reduced

as part of the remcheck operation. This is especially challenging for

the separating conjunction. For the separating conjunction we must

show that if 𝑄pre(𝐴1 && 𝐴2 , 𝜎0

𝑣 , 𝜎𝑣) holds, then (C1) 𝑄pre(𝐴1 , 𝜎0

𝑣 , 𝜎𝑣)
holds, and (C2) if remcheck 𝐴1 reduces successfully from the permission

definedness state 𝜎0

𝑣 and reduction state 𝜎𝑣 to outcome N(𝜎′
𝑣), then

𝑄pre(𝐴2 , 𝜎0

𝑣 , 𝜎
′
𝑣) holds. (C1) follows directly, since inhale 𝐴1 cannot fail

if inhale 𝐴1 && 𝐴2 cannot fail. (C2) is the challenging part. To prove

(C2), we require the following technical lemma stating a partial inversion
property between remcheck and inhale:

Lemma 3.5.1 Let 𝐴 be an assertion without permission introspection and
let 𝜎0

𝑣 , 𝜎′
𝑣 , 𝜎𝑖

𝑣 , 𝜎𝑠
𝑣 be Viper states, where 𝜎𝑠

𝑣 = 𝜎𝑖
𝑣 ⊕ (𝜎𝑣 ⊖ 𝜎′

𝑣) and 𝜎𝑠
𝑣 is

consistent. If 𝜎0

𝑣 ⊢ ⟨𝐴, 𝜎𝑣⟩ →rc N(𝜎′
𝑣) and ¬⟨𝐴, 𝜎i

𝑣⟩ →inh F holds, then
⟨𝐴, 𝜎i

𝑣⟩ →inh N(𝜎𝑠
𝑣).

In this lemma, ⊖ is the pointwise subtraction of the permission masks

(leaving the heap and store unchanged); ⊖ is a partial operation that is

defined iff the two input states have same the store and heap and the

subtraction yields nonnegative permission amounts.
26

26: In our formalisation, ⊖ is not partial,

because we reuse a general library for

partial commutative monoids that defines

⊖ in terms of ⊕ in a total way such that

⊖ precisely matches our description if

the two input states have the same store

and heap, and the subtraction yields non-

negative permission amounts. Since we

use ⊖ only whenever this condition in-

deed holds, our lemmas and proofs work

both with the partial version presented

here and the total version used in the

formalisation.

The lemma essentially states that the permissions removed by a successful

remcheck 𝐴 operation (expressed by 𝜎𝑣⊖𝜎′
𝑣) are exactly those that will be

added by a corresponding (non-failing) inhale 𝐴 operation. Moreover,

the lemma provides sufficient conditions for a non-failing inhale 𝐴

operation to not go to magic. Intuitively, the latter is the case because (1)

the fact that remcheck 𝐴 succeeds tells us that the logical constraints in

𝐴 are satisfied, and (2) adding the removed permissions to 𝜎𝑖
𝑣 does not

yield an inconsistent state (since the lemma requires 𝜎𝑠
𝑣 to be consistent).

We prove this lemma by induction on the reduction of remcheck.

We discuss why the lemma considers only assertions without permission

introspection later. First, we discuss the intuition for how this lemma

connects to our instantiation of𝑄pre and the proof of (C2). The existentially

quantified state 𝜎𝑖
𝑣 in 𝑄pre represents the permissions that the ongoing

remcheck operation has removed so far. So, for the proof of (C2) the

lemma helps us follows: Suppose we know 𝑄pre(𝐴1 && 𝐴2 , 𝜎0

𝑣 , 𝜎𝑣) holds

before the remcheck 𝐴1 && 𝐴2 operation where 𝜎∗
𝑣 is a witness for

the existentially quantified state in 𝑄pre. Then, the idea is to use the

lemma to justify 𝑄pre(𝐴2 , 𝜎0

𝑣 , ·) after a successful remcheck 𝐴1 operation

with a witness that contains all the permissions in 𝜎∗
𝑣 in addition to

the permission removed by remcheck 𝐴1. The fact that the witness

for the existentially quantified state in 𝑄pre represents the permissions

removed so far guarantees that adding the permission in the reduction

state 𝜎𝑣 to this witness yields at most the permission in the permission

162 3. Formally Validating Translations into an Intermediate Verification Language

definedness state 𝜎0

𝑣 (i. e. the condition 𝜎𝑣 ⊕ 𝜎i
𝑣 ⪯ 𝜎0

𝑣 in 𝑄pre always holds).

This is because the permission definedness state contains precisely

the permission at the beginning of the remcheck operation, and thus

this operation cannot remove more permission than contained in the

permission definedness state. In particular, the sum 𝜎𝑣⊕𝜎i
𝑣 stays the same

throughout the proof for different witnesses for 𝜎i
𝑣 (since the permissions

removed from 𝜎𝑣 are transferred to the witness of 𝜎i
𝑣).

Now that we have an intuition for Lemma 3.5.1 and its use in combination

with𝑄pre, let us consider a proof of (C2). Assume (a)𝑄pre(𝐴1 && 𝐴2 , 𝜎0

𝑣 , 𝜎𝑣)
and (b) 𝜎0

𝑣 ⊢ ⟨𝐴1 , 𝜎𝑣⟩ →rc N(𝜎′
𝑣) holds. Let 𝜎∗

𝑣 be a witness for the existen-

tially quantified state in (a). We must show𝑄pre(𝐴2 , 𝜎0

𝑣 , 𝜎
′
𝑣), which we aim

to do using witness 𝜎𝑠
𝑣 ≜ 𝜎∗

𝑣 ⊕ (𝜎𝑣 ⊖ 𝜎′
𝑣). We can show the first conjunct

within the existential quantifier in 𝑄pre(𝐴2 , 𝜎0

𝑣 , 𝜎
′
𝑣) (i. e. 𝜎′

𝑣 ⊕ 𝜎𝑠
𝑣 ⪯ 𝜎0

𝑣) by

using that 𝜎′
𝑣 ⊕ 𝜎𝑠

𝑣 = 𝜎𝑣 ⊕ 𝜎∗
𝑣 ⪯ 𝜎0

𝑣 (we get 𝜎𝑣 ⊕ 𝜎∗
𝑣 ⪯ 𝜎0

𝑣 from (a)). That

means, as discussed above, the sum of the reduction state and the witness

for the existentially quantified state stays the same for the instantiation

that we assume (i. e. (a)) and the instantiation that we want to prove.

For the second conjunct within the existential quantifier in𝑄pre(𝐴2 , 𝜎0

𝑣 , 𝜎
′
𝑣)

(i. e. ¬⟨𝐴2 , 𝜎s
𝑣⟩ →inh F), we want to apply Lemma 3.5.1, which requires

establishing the following premises of the lemma (the others are trivially

guaranteed from our assumptions): inhaling 𝐴1 from 𝜎∗
𝑣 does not fail,

and 𝜎𝑠
𝑣 is consistent. From (a) we know that there is a state 𝜎∗

𝑣 from which

inhaling 𝐴1 && 𝐴2 cannot fail. As a result, inhaling 𝐴1 from this state

cannot fail either. Moreover, 𝜎𝑠
𝑣 must be consistent because we know that

𝜎𝑠
𝑣 ⪯ 𝜎0

𝑣 (since 𝜎′
𝑣 ⊕ 𝜎𝑠

𝑣 ⪯ 𝜎0

𝑣 as we established above). Thus, since from

(a) we also know that 𝜎0

𝑣 is consistent, we get that 𝜎𝑠
𝑣 must be consistent

(consistency is downward monotonic).

Therefore, we can use Lemma 3.5.1 to get that inhaling 𝐴1 from 𝜎∗
𝑣

results in outcome N(𝜎𝑠
𝑣). Using this, we can complete the proof of (C2)

by establishing the second conjunct within the existential quantifier of

𝑄pre(𝐴2 , 𝜎0

𝑣 , 𝜎
′
𝑣). The reason is that we know that inhaling 𝐴2 from 𝜎𝑠

𝑣

cannot fail, since we know from (a) that inhaling 𝐴1 && 𝐴2 from 𝜎∗
𝑣 never

fails, and we know that inhaling 𝐴1 from 𝜎∗
𝑣 results in outcome N(𝜎𝑠

𝑣).
So, if inhaling 𝐴2 from 𝜎𝑠

𝑣 failed, then inhaling 𝐴1 && 𝐴2 from 𝜎∗
𝑣 would

fail (due to rule inh-sep-n in Figure 3.7 on page 115), which cannot be the

case. This concludes the proof of (C2).

Finally, note that the lemma requires that the assertion has no permission

introspection, since 𝜎𝑖
𝑣 and 𝜎𝑣 in general have different permission masks

and the remcheck and inhale operations manipulate the permissions

differently. This is not an issue for our use case, since permission in-

trospection is not permitted in Viper method specifications (except in

inhale-exhale assertions, which we do not support). Nevertheless, to see

why the lemma does not hold in general if permission introspection were

permitted, consider the following assertion 𝐴perm:

acc(x.f, write) &&

(perm(x.f) == write ==> acc(y.g, write))

Executing remcheck 𝐴perm in a state 𝜎𝑣 with full permission to x.f

and no other permission succeeds and results in a state 𝜎′
𝑣 without any

permissions. This is because perm(x.f) in the implication’s left-hand side

evaluates to 0 (since the first conjunct removed the permission) and thus

3.5. Putting The Methodology to Work 163

the right-hand side is not evaluated. However, executing inhale 𝐴perm
in a state 𝜎𝑖

𝑣 with no permissions results in a normal outcome whose

state 𝜎
𝑗
𝑣 has full permission to both x.f and y.g. This is because here

perm(x.f) in the implication’s left-hand side evaluates to full permission

(since the first conjunct added the permission). Thus, 𝜎
𝑗
𝑣 does not match

𝜎𝑖
𝑣 ⊕ (𝜎𝑣 ⊖ 𝜎′

𝑣), which would contain permission only to x.f but not y.g.

As a result, the lemma would not hold.

The inhale case

Now let us briefly turn to justifying translations of inhaling a method

call’s postcondition, which omit well-definedness checks. Analogously to

the remcheck case, we use the general strategy in Subsection 3.4.5, which

requires us to instantiate 𝑄post(𝐴, 𝜎𝑣) such that the following properties

hold: (1) 𝑄post(post(𝑚), 𝜎𝑣) holds for 𝜎𝑣 right before the inhale, (2) the

state relation and𝑄post(𝐴, 𝜎𝑣) imply that every definedness subexpression

𝑒 of 𝐴 is well-defined (i. e. ¬(𝜎𝑣 ⊢ ⟨𝑒 , 𝜎𝑣⟩ ⇓v)), and (3) 𝑄post must

be preserved for subassertions of 𝐴 that are reduced as part of the

inhale operation. Note that properties (2) and (3) together ensure that

𝑄post(𝐴, 𝜎𝑣) implies that any expression evaluated in the reduction of

inhale 𝐴 must be well-defined.

We instantiate 𝑄post with the following definition, which satisfies the

three properties:

𝑄post(𝐴, 𝜎𝑣) ≜ ¬(⟨𝐴, 𝜎𝑣⟩ →inh F)

Let us see why the three properties are guaranteed for this instantiation.

First, the well-formedness of the callee’s specification (see Definition 3.3.1

on page 129) guaranteed by the non-local check ensures that inhaling

the postcondition cannot fail from any consistent state whose store is

compatible with the callee’s precondition. From our usual state relation

(Figure 3.24) we know that the postcondition is inhaled from a consistent

state. Moreover, since the postcondition is inhaled only after the precon-

dition was successfully exhaled, we can prove that the postcondition

is inhaled only in states whose store is compatible with the callee’s

precondition. For this proof, we again use Lemma 3.5.1 to connect an

exhale of the precondition with an inhale of the precondition, since the

well-formedness definition uses the latter to express compatibility of the

store with the callee’s precondition. Thus, the first property holds.
27

27: More concretely, in our applica-

tion of the method call rule mcall-sim

in Figure 3.21, we choose 𝑅4 such that

𝑅4(𝜎∗𝑣 , 𝜎∗𝑏)(𝜎𝑣 , 𝜎𝑏) implies 𝑄post(𝐴, 𝜎𝑣),
where 𝐴 is the callee’s postcondition.

This is possible because a correspond-

ing success predicate in the rule includes

the condition expressing that the state in

which the postcondition is inhaled can

be reached via an exhale of the precon-

dition. This allows us to conclude that

the inhale occurs in a state whose store

is compatible with the precondition.

It is easy to see why the second and third property are satisfied by our

instantiation. The second property (every definedness subexpression

of 𝐴 is well-defined) follows directly from the fact that an inhale fails

if a definedness subexpression is ill-defined (rule inh-subexp-fail). The

third property also follows directly from the semantics of inhale. Note

that the reason why the third property is much easier to show here than

in the remcheck case is that here the actual operation is an inhale and

the instantiation of 𝑄post is also expressed via an inhale, while in the

remcheck case the two are expressed via different operations (remcheck

and inhale).

164 3. Formally Validating Translations into an Intermediate Verification Language

Proof Tree 𝑇1 :

Proof P2 (hint 3)

rcSimΓ𝑏 (𝑅2 , 𝑅2 , acc(x.f, q), 𝛾1 , 𝛾2)
Proof P3 (no hint)

rcSimΓ𝑏 (𝑅2 , 𝑅2 , y.g > x.f, 𝛾2 , 𝛾3)
(rsep-sim)

rcInvSim𝑄
Γ𝑏
(𝑅2 , 𝑅2 , acc(x.f, q) && y.g > x.f, 𝛾1 , 𝛾3)

Proof Tree 𝑇2 : ∀𝜏 𝜎𝑏 . 𝑅2(𝜏, 𝜎𝑏) =⇒ 𝑅3(𝜏, 𝜎𝑏)
Proof P4 (hints 4 and 5)

simΓ𝑏 (𝑅3 , 𝑅3 , Succ2 ,𝜆_. ⊥, 𝛾3 , 𝛾
′)
(weaken-input)

simΓ𝑏 (𝑅2 , 𝑅3 , Succ2 ,𝜆_. ⊥, 𝛾3 , 𝛾
′)

Proof P1 (hint 2)

bSimΓ𝑏 (𝑅1 , 𝑅2 , 𝛾, 𝛾1) (Proof Tree 𝑇1)
(rcprop)

rcInvSim𝑄
Γ𝑏
(𝑅1 , 𝑅2 , acc(x.f, q) && y.g > x.f, 𝛾, 𝛾3) (Proof Tree 𝑇2)

(exh2-sim︸ ︷︷ ︸
hint 1

)
stmSimΓ𝑣 ,Γ𝑏 (𝑅, 𝑅, exhale acc(x.f, q) && y.g > x.f, 𝛾, 𝛾′)

𝑅 ≜ 𝜆(𝜎𝑣 , 𝜎𝑏). SRTr,AV
Γ𝑣 ,Γ𝑏

((𝜎𝑣 , 𝜎𝑣), 𝜎𝑏) 𝑄(𝐴, (𝜎0

𝑣 , 𝜎𝑣)) = ⊤
𝑅1 ≜ 𝜆(𝜎0

𝑣 , 𝜎𝑣) 𝜎𝑏 . 𝜎0

𝑣 = 𝜎𝑣 ∧ 𝑅(𝜎𝑣 , 𝜎𝑏)
𝑅2 ≜ SRTr1 ,AV

Γ𝑣 ,Γ𝑏
Tr1 ≜ Tr(M0 ↦→ WM)

𝑅3 ≜ 𝜆(_, 𝜎𝑣) 𝜎𝑏 . 𝑅(𝜎𝑣 , 𝜎𝑏)

Figure 3.25: Proof tree constructed by our proof automation for the simulation of exhale acc(x.f, q) && y.g >
x.f via the Boogie statement in Figure 3.9 on page 124 shown on lines 10-23. The automation uses generated

hints for the application of rule exh2-sim, and for proofs at the leaves (P𝑖 ; left abstract here). The Boogie

program points 𝛾, 𝛾1, 𝛾2, 𝛾3, and 𝛾′
are the points in Figure 3.9 on page 124 starting on lines 10, 11, 17, 20,

and 23, respectively. SR is our state relation instantiation introduced in Subsection 3.5.1 on page 155. Succ2 is

defined in Figure 3.16 on page 145 (where the assertion is 𝐴1 && 𝐴2). The extra premises for predicate 𝑄 in

the applications of rules exh2-sim and rsep-sim are not shown; they trivially hold for the chosen 𝑄 here. Rules

rcprop and weaken-input are derived from bprop and conseq (Figure 3.15 on page 143), respectively.

3.5.4. Proof Automation

We have extended the Viper-to-Boogie implementation to automatically

generate an Isabelle certificate relating the source Viper and target Boogie

program for a given run. The generated certificates contain sufficient

information such that Isabelle can automatically check them successfully.

To make this automatic generation and subsequent checking possible,

we instrument fewer than 500 lines of the existing implementation

to produce hints, which provide extra information about the Boogie

encoding. A core component of our proof automation is an Isabelle tactic

that uses these hints to automatically prove forward simulations. The

tactic applies the rules provided by our methodology (Section 3.4) to

decompose simulations into smaller ones and generates proofs for atomic
simulations that are not further decomposed. Atomic simulations could

technically be decomposed even further, but since these simulations

are simple enough, our tactic does not further decompose them. Our

instrumentation generates two kinds of hints for the tactic: (1) hints

indicating which candidate of multiple diverse translations is used, and

(2) hints specifying how to instantiate parameters and discharge premises

of a rule. The generated hints contain sufficient information to enable

automation.

As a concrete example, consider Figure 3.25, which shows the proof

3.5. Putting The Methodology to Work 165

generated by our tactic (represented via a proof tree) for the forward

simulation of exhale acc(x.f, q) && y.g > x.f via the Boogie statement

on lines 10-23 in Figure 3.9 on page 124. Hints 1 and 4 in Figure 3.25 are

hints of the first kind. Hint 1 specifies that well-definedness checks are not

omitted in the translation of remcheck; as a result, the tactic instantiates

predicate 𝑄 in the rcInvSim simulation with the trivial predicate that

always holds (see Subsection 3.4.5 on page 152 for the purpose of this

predicate in general). Hint 4 specifies that the nondeterministic heap

assignment is not omitted in the Boogie code (see Subsection 3.3.2 on

page 126 for when it is omitted), which directs the tactic to use a specific

rule (not shown in the figure). Hints 2, 3, and 5 in Figure 3.25 are hints

of the second kind. Each of them provides information on temporary

Boogie variables (name and lemma showing the declared type is the

expected one) in Figure 3.9. The temporary variables here are (1) WM to

set up the permission definedness state on line 10 (hint 2), which results

in a change of the translation record (see Subsection 3.5.1 on page 155) in

𝑅2, (2) tmp to store the permission on line 11 (hint 3), which is used to

adjust the auxiliary variable map (see Subsection 3.5.1) in proof P2, and

(3) H’ to perform the nondeterministic selection on line 20 (hint 5).

After decomposing the simulation, our tactic must automatically prove

the atomic simulations. In Figure 3.25, P1 and P4 are such proofs. P2 and

P3 further decompose the simulation before reaching atomic simulations

(P2 does so via the rule racc2-sim shown in Figure 3.23 on page 154).

We use two main automation approaches for atomic simulations. Firstly,

we prove (once and for all) simple lemmas about our state relation

instantiation (see Subsection 3.5.1) and about the behaviours of small

sequences of simple Boogie commands; these are applied (and their

hypotheses discharged) automatically when needed. These lemmas are

used for only small parts of the overall translation. Secondly, we prove

(once and for all) simulation rules that capture effects simulated by Boogie

assume and assert commands for arbitrary expressions. This generality

enables a tactic to automatically prove Viper effects that are simulated

via a combination of these two commands. Both of these automation

approaches rely on a tactic that automatically shows a Viper expression

and a corresponding Boogie expression are related (we will discuss the

relation of expressions in Subsection 3.5.5).

Our tactic uses both of these approaches for the example in Figure 3.25.

Proof P2 uses the second approach for justifying the nonfailure check for

remcheck acc(𝑒. 𝑓 , 𝑝) shown on lines 11-15 in Figure 3.9.
28

Proofs P1 and 28: The approach is designed to work

without any changes to the tactic even if

the expressions in the two assert state-

ments were changed to be syntactically

different.

P4 use the first approach. Moreover, P2 also uses the first approach for

dealing with the assignment to the temporary Boogie variable storing

the to-be-removed permission amount and the assignment updating the

Boogie variable modelling the Viper permission mask. In the following,

we make the two automation approaches more concrete.

First automation approach: lemmas on the state relation instantiation

and on sequences of Boogie commands

For dealing with the assignment to a temporary Boogie variable, P2 uses

the following lemma that we proved once and for all:

166 3. Formally Validating Translations into an Intermediate Verification Language

Lemma 3.5.2 Let the following be arbitrary: Γ𝑏 (Boogie context) ,Tr (transla-
tion record), AV (auxiliary variable map), 𝜎0

𝑣 and 𝜎𝑣 (Viper states), 𝜎𝑏 (Boogie
state), 𝑥 (Boogie variable), 𝑒𝑣 (Viper expression), 𝑒𝑏 (Boogie expression), 𝑣
(Viper value). If

1. SRTr,AV
Γ𝑣 ,Γ𝑏

((𝜎0

𝑣 , 𝜎𝑣), 𝜎𝑏)
2. 𝜎0

𝑣 ⊢ ⟨𝑒𝑣 , 𝜎𝑣⟩ ⇓v V(𝑣)
3. expRelVprBoogieΓ𝑏 (SRTr,AV

Γ𝑣 ,Γ𝑏
, 𝑒𝑣 , 𝑒𝑏)

4. 𝑥 is not included in the Boogie variables tracked in Tr and AV
5. lookup𝑇(Vars(Γ𝑏), 𝑥) = typTypeInterp(Γ𝑏)(vprToBoogieVal(𝑣))

holds, then there is a Boogie state 𝜎′
𝑏

such that the following conditions hold:

1. Γ𝑏 ⊢ ((𝑥 := 𝑒𝑏 :: cs; ctrl,K),N(𝜎𝑏)) →∗
AST2 ((cs; ctrl,K),N(𝜎′

𝑏
))

2. SRTr,AV′

Γ𝑣 ,Γ𝑏
((𝜎0

𝑣 , 𝜎𝑣), 𝜎′
𝑏
), where AV′ is given by AV(𝑥 ↦→ 𝜆𝑣𝑏 . 𝑣𝑏 =

vprToBoogieVal(𝑣))

This lemma’s premises includes (1) the relation between a Viper and

Boogie state before the assignment via our concrete instantiation SR,

(2) that a Viper expression is known to evaluate to some value 𝑣 (𝜎0

𝑣 ⊢
⟨𝑒𝑣 , 𝜎𝑣⟩ ⇓v V(𝑣)), and (3) that a Boogie expression 𝑒𝑏 is related to 𝑒𝑣
(this relation is expressed via expRelVprBoogie, which will be discussed

in Subsection 3.5.5). The lemma’s conclusion states that assigning 𝑒𝑏
to Boogie variable 𝑥 ensures that the Boogie state 𝜎′

𝑏
after the Boogie

assignment is still related to the Viper state. In this state relation after the

assignment, the auxiliary variable map additionally tracks the fact that 𝑥

holds the Boogie value related to the Viper value 𝑣. The Boogie variable’s

declared type must match the type of the value that the assignment’s

right-hand side evaluates to (expressed via vprToBoogieVal(𝑣) in the final

premise), because Boogie’s assignment reduces only if the assigned value

has the declared type. Moreover, 𝑥 should not be tracked by the translation

record and auxiliary variable map in the premise, since otherwise the

assignment may violate some condition tracked by the state relation.

As a second example for a lemma used in the first automation approach,

consider the following lemma proved once and for all, which is used as

part of proof P4:

Lemma 3.5.3 Let the following be arbitrary: Γ𝑏 (Boogie context), Tr (transla-
tion record), AV (auxiliary variable map), 𝜎𝑣 (Viper state), 𝜎𝑏 (Boogie state),
(ℎ,ℎ′,𝑚) (Boogie variables), 𝑓 (function name), 𝑓 (semantic function), K
(Boogie continuation). If

1. SRTr,AV
Γ𝑣 ,Γ𝑏

((𝜎𝑣 , 𝜎𝑣), 𝜎𝑏)
2. nonDet(𝜎0

𝑣 , 𝜎𝑣 , 𝜎
′
𝑣)

3. ℎ = H(Tr) ∧ 𝑚 = M(Tr) ∧ H(Tr) = H0(Tr)
4. ℎ′ is not included in the Boogie variables tracked in Tr and AV
5. lookup𝑇(Vars(Γ𝑏), ℎ′) = HeapType

6. FunInterp(Γ𝑏)(𝑓) = 𝑓 and for any Boogie values ℎ̂ , ℎ̂′ modelling the
heap and �̂� modelling the mask, 𝑓 (ℎ̂ , ℎ̂′, �̂�) evaluates to a Boolean
value that is true iff ℎ̂ and ℎ̂′ agree on all reference-field pairs where �̂�
stores strictly positive permission.

then there is a Viper state 𝜎′
𝑏

such that SRTr,AV
Γ𝑣 ,Γ𝑏

((𝜎′
𝑣 , 𝜎

′
𝑣), 𝜎′

𝑏
) and Γ𝑏 ⊢

((havoc ℎ′ :: assume 𝑓 (ℎ, ℎ′, 𝑚) :: ℎ := ℎ′ :: ®𝑐; ctrl,K),N(𝜎𝑏)) →∗
AST2

3.5. Putting The Methodology to Work 167

∀𝜎𝑣 𝜎′
𝑣 𝜎𝑏 .

(
[𝑅(𝜎𝑣 , 𝜎𝑏) ∧ (Succ(𝜎𝑣 , 𝜎′

𝑣) ∨ Fail(𝜎𝑣))] =⇒
Γ𝑏 , ∅ ⊢ ⟨𝑒 , 𝜎𝑏⟩ ⇓ BoolVal(𝑏(𝜎𝑣))

)
∀𝜎𝑣 𝜎′

𝑣 𝜎𝑏 . [𝑅(𝜎𝑣 , 𝜎𝑏) ∧ Succ(𝜎𝑣 , 𝜎′
𝑣)] =⇒ 𝑏(𝜎𝑣)

simΓ𝑏 (𝑅, 𝑅′, Succ,𝜆𝜎𝑣 . Fail(𝜎𝑣) ∧ 𝑏(𝜎𝑣), (cs; ctrl,K), 𝛾′) (bassert-prop)
simΓ𝑏 (𝑅, 𝑅′, Succ, Fail, (assert 𝑒 :: cs; ctrl,K), 𝛾′)

∀𝜎𝑣 𝜎′
𝑣 𝜎𝑏 .

(
[𝑅(𝜎𝑣 , 𝜎𝑏) ∧ (Succ(𝜎𝑣 , 𝜎′

𝑣) ∨ Fail(𝜎𝑣))] =⇒
Γ𝑏 , ∅ ⊢ ⟨𝑒 , 𝜎𝑏⟩ ⇓ BoolVal(𝑏(𝜎𝑣)) ∧ 𝑏(𝜎𝑣)

)
simΓ𝑏 (𝑅, 𝑅′, Succ, Fail, (cs; ctrl,K), 𝛾′) (bassume-prop)

simΓ𝑏 (𝑅, 𝑅′, Succ, Fail, (assume 𝑒 :: cs; ctrl,K), 𝛾′)

Figure 3.26: Generic simulation rules for propagating Boogie assert and assume commands.

((®𝑐; ctrl,K),N(𝜎′
𝑏
)) holds.

This lemma captures that a havoc-assume-assignment sequence simulates

a nondeterministic heap assignment w.r.t. our state relation instantiation

(see Subsection 3.5.1 on page 155).
29

Note that the final premise requires 29: If the implementation changed the

translation for the nondeterministic heap

assignment, then we would have to ad-

just only the tactic’s proof strategy for

this assignment via a new lemma (i. e.
proof P4 in Figure 3.25); the rest would

remain unchanged.

𝑓 ’s interpretation to satisfy a specific property. We apply the lemma only

using Boogie contexts with a Boogie function interpretation that satisfies

this property. In particular, for the existing Viper-to-Boogie translation,

the function 𝑓 is given by idOnPositive presented in Subsection 3.3.6 on

page 132; a corresponding Boogie axiom constrains idOnPositive in the

same way as required by this lemma (see Subsection 3.3.6). We perform all

of our simulation proofs with a Boogie function and type interpretation

under which the Boogie axioms in the target Boogie program hold, and

thus always use an interpretation of idOnPositive that satisfies the

required property.

Second automation approach: assert and assume commands

The Boogie encoding employs assert commands at multiple points to

explicitly reflect conditions imposed by corresponding Viper operations.

Moreover, the encoding employs assume commands to explicitly reflect

conditions ensured by corresponding Viper operations. With our second

automation approach, we want to justify these commands automati-

cally for arbitrary syntactic Boolean Boogie expressions. This means

in particular, when justifying an assert 𝑒 (resp. assume 𝑒) command,

the automation should work for syntactically different expressions 𝑒

that semantically evaluate to the same value. For instance, in Figure 3.9

on page 124, the Boogie encoding contains the assertion assert M[x,f

] >= temp, which checks whether the permission mask (modelled by

Boogie variable M) has sufficient permission. We have designed our proof

automation to work irrespective of what syntactic expression is used

to express whether there is sufficient permission (e.g. temp <= M[x,f]

would be another option). Such automation provides a systematic way

of dealing with assert and assume commands, which will help with

extending our certification work to a larger Viper subset.

To achieve this goal, our second proof automation approach uses the

168 3. Formally Validating Translations into an Intermediate Verification Language

generic simulation rules shown in Figure 3.26 to handle simulations of

Viper effects where the next Boogie command is an assert or assume.

These simulation rules are applicable for any Boolean expression used in

the commands. Our automation applies rule bassert-prop in the case of a

Boogie assert command and rule bassume-prop in the case of a Boogie

assume command. Next, we discuss bassert-prop in more detail; the ideas

for bassume-prop are similar.

The main intuition of the rule bassert-prop is the following: If one can

express the value that the Boogie expression in the assert evaluates

to in terms of the Viper state, then it becomes feasible to automatically

relate the assert with the to-be-simulated Viper effect. The first premise

in the rule reflects the evaluation of the Boogie expression in terms of

the Viper state via a function 𝑏 from Viper states to Booleans, where

all Viper and Boogie states relevant for the simulation are considered.

We discuss below how to automatically pick 𝑏. The second premise

requires that the assert does not fail in case the Viper effect succeeds

(expressed via the function 𝑏), otherwise the simulation does not hold.

Proving this second premise automatically is feasible precisely because

the assert condition is expressed directly via the Viper state. Finally, the

third premise expresses the simulation if the assert command succeeds.
Here, the failure predicate explicitly gets the condition that the assert

succeeds; the success predicate Succ already implies the success of the

assert due to the second premise. Note that if the to-be-simulated Viper

effect in the rule’s conclusion fails (i. e. Fail(𝜎𝑣) holds), then either the

assert command fails or succeeds. If the assert fails, then the simulation

of the (failing) Viper effect is established. If the assert succeeds, then

the final premise ensures that there is a failing Boogie execution in the

remaining code.

Our proof automation technique is able to automatically prove the

simulation of the nonfailure check for remcheck acc(𝑒. 𝑓 , 𝑝) by applying

the rule bassert-prop for both assert commands emitted in the Boogie

encoding (see lines 11-15 in Figure 3.9 on page 124 for an example). After

the second application of bassert-prop, the remaining simulation’s failure

predicate contains (1) the condition defining when remcheck acc(𝑒. 𝑓 , 𝑝)
fails, and (2) the conditions defining when both assert commands

succeed. Our automation shows via the application of a built-in Isabelle

tactic that (1) and (2) contradict each other, which means that at least

one of the assert commands fails if remcheck acc(𝑒. 𝑓 , 𝑝) fails, which

establishes the simulation.

There is still the question of how our approach automatically chooses

the function 𝑏 from Viper states to Booleans in the first premise of

bassert-prop, where 𝑏(𝜎𝑣) denotes the value that the assert condition 𝑒

evaluates to in Viper state 𝜎𝑣 . At a high level, our automation chooses 𝑏 as

follows. In a first step, our automation proves evaluation results in terms

of the Viper state for all minimal subexpressions in 𝑒 whose evaluation

must consider the state relation between the Viper and Boogie states in

order to express the result in terms of the Viper state. In a second step,

our automation chooses 𝑏 by proving the first premise of bassert-prop

using the first step’s results. Importantly, our automation does not choose

𝑏 before proving the premise. Instead, our automation does the proof

while leaving 𝑏 symbolic. At the end of the proof, a single proof goal

remains, which constrains 𝑏(𝜎𝑣) in a way that then allows our automation

3.5. Putting The Methodology to Work 169

to choose 𝑏 in a straightforward way. This second step that chooses 𝑏 as

part of the proof is enabled by our routine use of schematic variables in

Isabelle (evars in other tools), for postponing the choice of witnesses for

existentially-quantified values. That is, when beginning the proof of the

first premise, 𝑏 is a schematic variable and by the end of the proof 𝑏 is

correctly instantiated. Our automation uses built-in Isabelle tactics, which

can deal with schematic variables and can instantiate them correctly in the

final proof goal. The second step proves the first premise by repeatedly

applying the Boogie expression evaluation rules (Figure 2.4 on page 29

in Chapter 2) on the first premise of bassert-prop and whenever a subgoal

is reached that specifies the evaluation of a minimal subexpression from

the previous step, our automation uses the previously computed result.

For subgoals obtained from this repeated application that do not involve

the evaluation of expressions, our automation uses built-in Isabelle tactics

to discharge them.

To illustrate these two steps, suppose that the assert condition 𝑒 is M[x

,f] >= temp as for the sufficient permission check. Here, the minimal

subexpressions considered in the first step are M[x,f] and temp. Our

automation shows that M[x,f] evaluates to Π(𝜎𝑣)(𝑥𝑣 , 𝑓𝑣), where 𝜎𝑣 is the

Viper state, and 𝑥𝑣 and 𝑓𝑣 are the Viper counterparts of Boogie variables

x and f. Moreover, our automation shows that temp evaluates to the

permission 𝑝 that is to be removed. In the second step, our automation

applies the Boogie expression evaluation rule for binary operators, and

then proves the evaluation of the two operands with the results computed

by the first step. The final subgoal requires showing the result of the binary

operation, which our automation proves using a built-in Isabelle tactic,

which establishes that the result is Π(𝜎𝑣)(𝑥𝑣 , 𝑓𝑣) ≥ 𝑝. As a consequence

of proving this final subgoal, the function 𝑏, which is a schematic variable

before this final proof, is automatically chosen by the built-in Isabelle

tactic applied by our automation to be 𝜆𝜎𝑣 . Π(𝜎𝑣)(𝑥𝑣 , 𝑓𝑣) ≥ 𝑝.

Proving the evaluation of minimal subexpressions

The first step of our automation approach computes the evaluation

of minimal subexpressions where one must take the state relation

into account. Since we know what each emitted assert command

encodes, we know what minimal subexpressions to expect. Currently,

these minimal subexpressions are hardcoded into the tactic for the

first step. Thus, if the relevant minimal subexpressions change for

an assert emitted by the translation, then we would have to adjust

our tactic. An alternative would be to drive the first step via hints

generated by the instrumentation, which would provide information

on the relevant minimal subexpressions. Further note that, in the first

step, our automation uses simple once-and-for-all proved lemmas for

certain parts that can be reused in many contexts. For instance, we

prove a generic once-and-for-all proved lemma showing that Boogie

expressions of the form M[e,f] evaluate to the permission value

stored in the corresponding Viper permission mask under certain

conditions (e.g. if the state relation holds).

170 3. Formally Validating Translations into an Intermediate Verification Language

Dealing with the structural AST mismatch

A general challenge when our automation applies the rules from Sec-

tion 3.4 is that the Viper and Boogie ASTs are structured differently

(see Subsection 3.2.1). Thus, the automatic selection of Boogie program

points in the premises of rules is not immediate. For example, when

applying rule exh2-sim in Figure 3.25, the tactic cannot easily choose the

intermediate program point 𝛾3 by inspecting the initial program point

𝛾. Instead, the tactic starts proving the first premise with an existentially
quantified 𝛾3. Once the proof reaches the goal of proof P1 (i. e. the first

atomic simulation), it becomes clear how to advance the program point 𝛾
and, by the end of the proof of the first premise of exh2-sim, the choice of

𝛾3 becomes clear. This strategy is enabled by our routine use of schematic

variables in Isabelle (evars in other tools), for postponing the choice of

witnesses for existentially-quantified values.

3.5.5. Relating Viper and Boogie Expressions

Automatically relating a Viper expression with a corresponding Boogie

expression is an important building block of our proof automation.

We express the relation between a Viper expression 𝑒𝑣 and a Boogie

expression 𝑒𝑏 w.r.t. Boogie context Γ𝑏 and state relation 𝑅 using the

judgement expRelVprBoogieΓ𝑏 (𝑅, 𝑒𝑣 , 𝑒𝑏). Formally, we define the relation

between expressions as follows:
30

30: Here, the state relation 𝑅 relates a

pair of Viper states (permission defined-

ness state and evaluation state) with a

Boogie state.
Definition 3.5.1 (Judgement relating a Viper and a Boogie expression)

expRelVprBoogieΓ𝑏 (𝑅, 𝑒𝑣 , 𝑒𝑏) ≜
∀𝜎0

𝑣 𝜎1

𝑣 𝜎𝑣 𝜎𝑏 𝑣. [𝑅((𝜎0

𝑣 , 𝜎𝑣), 𝜎𝑏) ∧ 𝜎1

𝑣 ⊢ ⟨𝑒𝑣 , 𝜎𝑣⟩ ⇓v V(𝑣)] =⇒
Γ𝑏 , ∅ ⊢ ⟨𝑒𝑏 , 𝜎𝑏⟩ ⇓ vprToBoogieVal(𝑣)

The definition essentially expresses that for any related Viper and Boogie

states, if the Viper expression evaluates normally to a value 𝑣, then

the Boogie expression evaluates to the corresponding value (expressed

via vprToBoogieVal(𝑣)). There is one technicality in the definition. The

permission definedness state 𝜎1

𝑣 considered for the evaluation of the

Viper expression does not necessarily match the permission definedness

state 𝜎0

𝑣 used as input for the state relation. We currently do not require

the definition in cases where the states do not match. Nevertheless, we

formalise this more general definition where they could differ, because we

wanted to leave the option open of further parameterising the expression

evaluation judgement such that one could additionally obtain a total
evaluation. A total evaluation would always yield a value even for ill-

defined expressions (e.g., permissions would not be checked for field

accesses, and division by 0 would get some fixed value) and thus does

not depend on the permission definedness state. Prior formalisations of

implicit dynamic frames have used such a total evaluation [107], and so[107]: Summers et al. (2013), A Formal
Semantics for Isorecursive and Equirecursive
State Abstractions

we thought that additionally having a total evaluation would be useful for

larger Viper subsets (extensibility to larger Viper subsets being one of our

3.5. Putting The Methodology to Work 171

∀𝜎𝑣 𝜎0

𝑣 𝜎𝑏 . 𝑅((𝜎0

𝑣 , 𝜎𝑣), 𝜎𝑏) =⇒
(
∃𝑤. ST(𝜎𝑣)(𝑥𝑣) = 𝑤 ∧
lookup(Vars(Γ𝑏), 𝜎𝑏 , 𝑥𝑏) = vprToBoogieVal(𝑤)

)
(var-rel)

expRelVprBoogieΓ𝑏 (𝑅, 𝑥𝑣 , 𝑥𝑏)

bop𝑣 ∈ {||, &&,⇒}
∀𝜎𝑣 𝜎0

𝑣 𝜎𝑏 . 𝑅((𝜎0

𝑣 , 𝜎𝑣), 𝜎𝑏) =⇒ ∃𝑐. Γ𝑏 , ∅ ⊢ ⟨𝑒′
𝑏
, 𝜎𝑏⟩ ⇓ BoolVal(𝑐)

expRelVprBoogieΓ𝑏 (𝑅, 𝑒𝑣 , 𝑒𝑏)
expRelVprBoogieΓ𝑏 (𝑅, 𝑒′𝑣 , 𝑒′𝑏) (binop-lazy-rel)

expRelVprBoogieΓ𝑏 (𝑅, 𝑒𝑣 bop𝑣 𝑒′𝑣 , 𝑒𝑏 b̂op𝑣 𝑒′𝑏)

∀𝜎𝑣 𝜎0

𝑣 𝜎𝑏 . 𝑅((𝜎0

𝑣 , 𝜎𝑣), 𝜎𝑏) =⇒ SRTr,AV
Γ𝑣 ,Γ𝑏

((𝜎0

𝑣 , 𝜎𝑣), 𝜎𝑏)
Fields(Γ𝑣)(𝑓𝑣) = 𝜏𝑣 𝑓𝑏 = field(Tr)(𝑓𝑣)

𝑒𝑏 = hread(H(Tr), 𝑒′
𝑏
, 𝑓𝑏 , vprToBoogieTyp(𝜏𝑣))

heapReadWfΓ𝑏 (hread)
expRelVprBoogieΓ𝑏 (𝑅, 𝑒′𝑣 , 𝑒′𝑏) (field-rel)

expRelVprBoogieΓ𝑏 (𝑅, 𝑒′𝑣 . 𝑓𝑣 , 𝑒𝑏)

heapReadWfΓ𝑏 (hread) ≜ ∀𝑒ℎ , 𝑒𝑟 , ℎ, 𝑟, 𝑓 , 𝜎𝑏 , 𝑣, 𝜏.©«
Γ𝑏 , ∅ ⊢ ⟨𝑒ℎ , 𝜎𝑏⟩ ⇓ AHeap(ℎ) ∧ ℎ(𝑟,NormalField(𝑓 , 𝜏)) = 𝑣 ∧
typTypeInterp(Γ𝑏)(AHeap(ℎ)) = HeapType ∧
Γ𝑏 , ∅ ⊢ ⟨𝑒𝑟 , 𝜎𝑏⟩ ⇓ ARef(𝑟) ∧
Γ𝑏 , ∅ ⊢ ⟨𝑒 𝑓 , 𝜎𝑏⟩ ⇓ AField(NormalField(𝑓 , 𝜏))

ª®®®¬
=⇒

Γ𝑏 , ∅ ⊢ ⟨hread(𝑒ℎ , 𝑒𝑟 , 𝑒 𝑓 , vprToBoogieTyp(𝜏)), 𝜎𝑏⟩ ⇓ 𝑣

Figure 3.27: Selected rules for relating a Viper expression with a Boogie expression. The term b̂op𝑣 denotes

the Boogie binary operator corresponding to bop𝑣 . The definition of heapReadWfΓ𝑏 (hread) uses constructors

for the instantiation of Boogie’s abstract value carrier type, which were presented in Subsection 3.3.7 on

page 136. This definition expresses that if the parameters of the function hread have the expected types, then

hread returns the value in the input Boogie heap ℎ (a parameter of hread) stored at the corresponding heap

location (also parameters of hread).

design goals). This definition makes explicit that the specific permission

definedness state used in the expression evaluation does not matter

for this definition, and thus this definition could be made compatible

(i. e. the result would hold for concrete Viper and Boogie expressions)

with a total evaluation. The reason the specific permission definedness

state does not matter is that the definition considers only well-defined
expressions as indicated by the evaluation to a normal value instead of

failure. Since the permission definedness state does not influence the value
that a well-defined expression evaluates to, the Boogie expression should

evaluate to the corresponding Boogie value irrespective of the permission

definedness state used for the Viper evaluation. This definition would

be compatible with a total evaluation if one ensures that the ill-defined

cases (e.g. division by 0) evaluate the same way in Viper and Boogie.

To automate proofs of this expression relation judgement, we prove rules

for the different Viper expression constructors that decomposes the proof

into proofs relating subexpressions and basic subgoals. Our automation

applies decomposition rules as long as possible and handles the remaining

subgoals via tactics. Our rules are kept generic for the most part (e.g.
most of the rules are fully parametric in the state relation) in order to be

172 3. Formally Validating Translations into an Intermediate Verification Language

applicable in different contexts. Both of these points (decomposition and

genericity) are similar to how we set up our simulation rules (Section 3.4).

A key difference to the simulation rule decomposition is that here the

decompositions follow solely the syntactic structure of the expressions

as opposed to defining semantic decompositions that go beyond the

syntax.

Figure 3.27 shows a selection of rules that we use. Rule var-rel relates a

Viper variable with a Boogie variable. Its premise states that for related

Viper and Boogie states, the Viper store and the Boogie state map the

variables to corresponding values. Rule binop-lazy-rel relates a lazy Viper

binary operation with a corresponding Boogie operation.
31

The two final31: A binary operation is lazy if the sec-

ond operand may not be evaluated, since

the first operand determines the result.

premises relate the subexpressions. Compared to Viper, Boogie treats

every binary operation eagerly, which means in Boogie both operands are

always evaluated. As a result, the evaluation of a Viper binary operation

does not on its own imply that the corresponding Boogie binary operation

reduces to a corresponding value, since the second Boogie operand

may be ill-typed. To account for this mismatch, the second premise

explicitly requires that the second Boogie operand always reduces to

a Boolean value (since all lazy Viper operators are Boolean operators).

Our automation proves this second premise by showing that the second

Boogie operand is well-typed and then uses Boogie’s type soundness

for expressions to prove the premise (see Subsection 2.3.6 on page 35

in Chapter 2). The reduction of the first Boogie operand 𝑒𝑏 follows from

the fact that the first Viper operand 𝑒𝑣 is always evaluated and since the

premises require that 𝑒𝑣 and 𝑒𝑏 are related.

The most involved rule in Figure 3.27 is field-rel for relating a Viper

field access to a corresponding Boogie expression. Here, a difference to

the other rules is that the first premise requires that the state relation

parameter 𝑅 implies our state relation instantiation with some translation

record Tr and some auxiliary variable map AV (see Subsection 3.5.1 on

page 155). This allows the rule to use properties of the translation record

such as, for instance, the Viper heap being related to H(Tr) and field(Tr)
mapping Viper fields to related Boogie constants. While it would be

possible to formalise a rule that makes all these properties explicit in the

rule without using the state relation instantiation, it would clutter the

rule substantially. So, we instead decided to formalise a more specific

rule that is more concise.

Let us take a look at the other premises of field-rel. The second premise

states that the accessed Viper field indeed exists and stores values of type

𝜏𝑣 . The third premise states that 𝑓𝑏 is the Boogie constant modelling the

accessed Viper field. The fourth premise states that the Boogie expression

𝑒𝑏 representing the field access must depend only on the Boogie variable

tracking the Viper heap (H(Tr)), some Boogie receiver expression (𝑒′
𝑏
),

the Boogie constant related to the Viper field (𝑓𝑏), and the Boogie type

representing values stored in the Viper field (vprToBoogieTyp(𝜏𝑣)). This

premise is expressed via a function hread that depends only on these

parameters, and which can be chosen by a client of the rule.
32

32: hread is not a Boogie function. It is a

mapping from Boogie expressions and

a Boogie type to a Boogie expression.

When using the rule, we instantiate hread
to map its arguments to a Boogie function

call (using the Boogie function readHeap

shown in Figure 3.13 on page 135).

The fifth

premise requires that expressions mapped to by hread read the expected

value from the Boogie heap, which is expressed via heapReadWfΓ𝑏 (hread).
The final premise requires that the Viper and Boogie receiver expressions

are related.

3.5. Putting The Methodology to Work 173

Translation

method 𝑚1 { proc 𝑝1

· · ·
method 𝑚𝑛 { proc 𝑝𝑛

Relational proofs

Rel𝐺
𝐹,𝑀

(𝑚1 , 𝑝1)
· · ·
Rel𝐺

𝐹,𝑀
(𝑚𝑛 , 𝑝𝑛)

Final certificate

(∀𝑝 ∈ 𝑃. procCorrect(𝐺, 𝑝))
=⇒

∀𝑚 ∈ 𝑀. methodCorrect𝐹,𝑀(𝑚)
𝑀 = {𝑚1 , 𝑚2 , ..., 𝑚𝑛} 𝑃 = {𝑝1 , ..., 𝑝𝑛}
Rel𝐺

𝐹,𝑀
(𝑚, 𝑝) ≜ procCorrect(𝐺, 𝑝) ⇒ SpecWf𝐹(𝑚)︸ ︷︷ ︸

(C1)

∧
[
(∀𝑚′ ∈ 𝑀. SpecWf𝐹(𝑚′)) ⇒ methodCorrect𝐹,𝑀(𝑚)

]︸ ︷︷ ︸
(C2)

Figure 3.28: Proof strategy for validating the existing Viper-to-Boogie translation. First, a proof is generated

relating each Viper method with the corresponding Boogie procedure. Second, the final certificate is deduced.

𝐹 denotes the Viper fields, 𝑀 denotes the Viper methods, 𝐺 denotes the constants, global variables, Boogie

axioms, and functions emitted by the translation. procCorrect is defined in Definition 2.3.1 on page 32, SpecWf
is defined in Definition 3.3.1 on page 129, and methodCorrect is defined in Definition 3.2.1 on page 119.

3.5.6. Generating a Certificate of the Final Theorem

We will now discuss, given a Viper program and its Boogie translation,

how forward simulation proofs can be used to generate a certificate of

the final theorem justifying the soundness of the translation: i. e. that the

correctness of the Boogie program (i. e. the correctness of all contained

Boogie procedures) implies the correctness of the Viper program (i. e. the

correctness of all contained Viper methods).

We decompose the certificate of the final theorem into smaller parts.

At a high level, the Viper-to-Boogie translation works as follows. Let 𝐹

and 𝑀 be the set of Viper fields and methods in the Viper program,

respectively. The Viper-to-Boogie translation (1) emits global Boogie

declarations 𝐺 (see Subsection 3.3.6) and (2) generates a separate Boogie

procedure 𝑝(𝑚) for every Viper method 𝑚 in 𝑀. The intended relation

between 𝑚 and 𝑝(𝑚) is given by Rel𝐺
𝐹,𝑀

(𝑚, 𝑝(𝑚)) in Figure 3.28, which

states that the correctness of 𝑝(𝑚) w.r.t. 𝐺 guarantees two things: (C1)

the well-formedness of 𝑚’s specification, and (C2) the correctness of 𝑚

w.r.t. 𝐹 and 𝑀 if the specifications of all methods in the Viper program

are well-formed. The reason that the correctness of 𝑚 is not implied

directly is due to the optimised translation of method calls (as explained

in Subsection 3.3.3 on page 127).

Figure 3.28 shows how we generate the certificate of the desired theorem

in two steps. First, for each Viper method 𝑚 and its translated Boogie

procedure 𝑝(𝑚), we generate a proof for Rel𝐺
𝐹,𝑀

(𝑚, 𝑝(𝑚)), explained next.

Second, we obtain the desired theorem directly from these per-method

relational proofs, since the correctness of all Boogie procedures implies

that all Viper method specifications are well-formed using (C1), which

implies that each Viper method is correct using (C2).

Next, we turn the focus to our strategy for proving Rel𝐺
𝐹,𝑀

(𝑚, 𝑝(𝑚)). We

first discuss the strategy for (C2) (correctness of 𝑚), and then discuss

the strategy for (C1) (well-formedness of 𝑚’s specification). Both cases

boil down to proving forward simulations, which we establish using our

presented methodology.

Intuitively, to prove that 𝑚 is correct, we have to show that for any state

that satisfies 𝑚’s precondition, executing 𝑚’s body in this state results in

a state that satisfies 𝑚’s postcondition. The correctness definition for a

Viper method (shown in Definition 3.2.1 on page 119) expresses this by

174 3. Formally Validating Translations into an Intermediate Verification Language

requiring that any execution starting in a state 𝜎𝑣 with no permissions

that inhales the precondition, then executes the body, and finally exhales

the postcondition, cannot fail. As planned, we obtain this result via a

forward simulation proof between the executed Viper statement and

𝑝(𝑚)’s procedure body using our presented methodology. Formally, we

show:

∃𝑅′, 𝛾′. stmSimΓ0

𝑣 ,Γ
0

𝑏
(𝑅0 , 𝑅

′, 𝑠0

𝑣 , initProgPoint(𝑝(𝑚)), 𝛾′)
where 𝑠0

𝑣 ≜ inhale pre(𝑚); body(𝑚); exhale post(𝑚)

Here, Γ0

𝑣 ≜ initCtxt𝑀,𝐹
𝑣 (𝑚) is the initial Viper context. Γ0

𝑏
is a Boogie context

that is defined in terms of our chosen type and function interpretation

(see Subsection 3.3.6 on page 132). 𝑅0 is a conjunction of an instantiation

of the state relation shown in Subsection 3.5.1 on page 155 and a constraint

stating that the Viper state has no permissions. initProgPoint(𝑝(𝑚)) is the

initial Boogie program point in 𝑝(𝑚)’s procedure body (as first introduced

in Subsection 2.8.3 on page 83). The output state relation 𝑅′
and output

Boogie program point 𝛾′
are irrelevant, since we care only about the

simulation of failing Viper executions here.

To complete the proof, we choose an initial Boogie state 𝜎𝑏 such that

𝑅0(𝜎𝑣 , 𝜎𝑏). For instance, we pick values for Boogie variables in 𝜎𝑏 that

capture 𝜎𝑣 as required by 𝑅0 (e.g. the variable H modelling the heap

would get the Boogie heap value that maps each existing Viper heap

location to the same value as the heap in 𝜎𝑣). As a result, if a Viper

execution 𝐸𝑣 of statement 𝑠0

𝑣 in 𝜎𝑣 fails, the forward simulation provides

us with a failing Boogie execution 𝐸𝑏 of 𝑝(𝑚). Using the correctness of

𝑝(𝑚), we conclude that 𝐸𝑏 cannot fail, and thus conclude that 𝐸𝑣 cannot

fail, which concludes the proof of (C2).

There are some steps required to conclude that 𝐸𝑏 cannot fail from the

correctness of 𝑝(𝑚): in particular, we must show that our chosen Boogie

type interpretation and function interpretation are well-formed, and

that the Boogie axioms are satisfied in 𝜎𝑏 w.r.t. our chosen interpre-

tations. We discussed the former in Subsection 3.3.6 on page 132 and

Subsection 3.3.7 on page 136. The latter is fairly straightforward, given

our chosen interpretations. Finally, we must bridge the gap between the

Boogie AST reduction that reduces each basic command in a separate

step (judgement →∗
AST2 used in the forward simulation) and the Boogie

AST reduction that reduces the list of basic commands at the beginning of

a statement block in a single step (judgement →∗
AST used in the procedure

correctness), which is straightforward.
33

33: Subsection 2.8.2 on page 81 in Chap-

ter 2 discusses the two AST reductions.

Note that the existing Viper-to-Boogie translation omits well-definedness

checks for the final exhale of the postcondition in the statement 𝑠0

𝑣

above. This is justified because 𝑝(𝑚) checks the well-formedness of

𝑚’s specification as shown via (C1). To justify the omission of the well-

definedness checks, we apply essentially the same strategy as outlined

in Subsection 3.5.3 for method calls, where well-definedness checks

are omitted for a remcheck of the precondition and inhale of the

postcondition. The main difference is that here in the proof of (C2),

we need to explicitly show that the Viper body does not modify 𝑚’s

arguments in order to show that the store of each Viper state in which

the final exhale of the postcondition is executed is compatible with the

precondition. Without such a property, we would not be able to make use

3.5. Putting The Methodology to Work 175

of the well-formedness of 𝑚’s specification, and thus would not be able to

justify the existing translation of the final exhale of the postcondition. In

the case of method calls, one gets the fact that the store considered for the

postcondition is compatible with the precondition for “free”, because the

callee’s postcondition is considered right after the callee’s precondition

is exhaled (the store is not modified by an exhale).

Let us now turn our attention to our strategy for proving (C1) (well-

formedness of 𝑚’s specification). Method 𝑚’s specification is well-formed

iff (1) inhaling the precondition from any well-typed and consistent

Viper state 𝜎𝑣 does not fail and (2) inhaling the postcondition from

any state whose store is compatible with the precondition does not fail

(see Definition 3.3.1 on page 129). We prove the well-formedness of 𝑚’s

specification by showing forward simulations for (1) and (2) using our

presented methodology. Formally, we show:

∃𝑅1 𝛾1. stmSimΓ0

𝑣 ,Γ
0

𝑏
(𝑅0 , 𝑅1 , inhale pre(𝑚), initProgPoint(𝑝(𝑚)), 𝛾1) ∧

∃𝑅2 𝛾2. simΓ0

𝑏
(𝑅1 , 𝑅2 , Succ,𝜆_. ⊥, 𝛾1 , 𝛾2) ∧

∃𝑅3 𝛾3. stmSimΓ0

𝑣 ,Γ
0

𝑏
(𝑅2 , 𝑅3 , inhale post(𝑚), 𝛾2 , 𝛾3)

where Succ ≜ 𝜆𝜎𝑣 𝜎′
𝑣 .

ST(𝜎𝑣) = ST(𝜎′
𝑣) ∧ stateWellTyVpr(𝐹, 𝑚, 𝜎′

𝑣) ∧
(∀𝑙. Π(𝜎′

𝑣)(𝑙) = 0)

In this statement, Γ0

𝑣 , Γ0

𝑏
, 𝑅0, and initProgPoint(𝑝(𝑚)) are identical as in

the statement shown for (C1) above. Analogously to the proof for (C2),

we can deduce (C1) from this statement by choosing an initial Boogie

state 𝜎𝑏 such that 𝑅0(𝜎𝑣 , 𝜎𝑏), and then deducing that (C1) holds, since

the are no failing executions from 𝜎𝑏 .

The first conjunct handles the well-formedness requirements on the

precondition and the final two conjuncts handle the well-formedness

requirements on the postcondition. More concretely, the first conjunct

ensures that inhaling the precondition from 𝜎𝑣 cannot fail, because oth-

erwise the corresponding simulation yields a failing Boogie procedure

execution from 𝜎𝑏 . The second and third conjuncts handle the postcondi-

tion. The second conjunct ensures that if the inhale of the precondition

results in a state 𝜎
pre
𝑣 , then after the simulation of the inhale there is a

Boogie execution that is able to capture any well-typed Viper state 𝜎′
𝑣

that has no permissions and that has the same store as 𝜎
pre
𝑣 (i. e. the store

of 𝜎′
𝑣 is compatible with the precondition). That is, there is a Boogie

procedure execution leading to a Boogie state related to 𝜎′
𝑣 . The third

conjunct ensures that inhaling the postcondition from such a state 𝜎′
𝑣

cannot fail since otherwise the simulation would yield a failing Boogie

procedure execution. Since Viper disallows permission introspection in

specifications (except in inhale-exhale assertions, which we do not support),

this implies that inhaling the postcondition cannot fail for any well-typed

state with a store that is compatible with the precondition (not just those

with empty permissions). This concludes our strategy for proving (C2),

and thus our strategy for Rel𝐺
𝐹,𝑀

(𝑚, 𝑝(𝑚)).

176 3. Formally Validating Translations into an Intermediate Verification Language

// lines 96 - 140 omitted

Figure 3.29: A snippet of an automatically generated Isabelle certificate for a Viper program. The Isabelle

lemma in this snippet expresses forward simulations that imply Rel𝐺
𝐹,𝑀

(𝑚, 𝑝(𝑚)) for a concrete method

𝑚 and concrete Boogie procedure 𝑝(𝑚) (see Subsection 3.5.6 for a discussion on Rel𝐺
𝐹,𝑀

(𝑚, 𝑝(𝑚))). Lines

82-89 formally express the statement to be proved (the term method_rel is defined in terms of forward

simulations) and lines 90-146 form the proof of the lemma (lines 96 - 140 are not shown here). All applied

tactics in the proof are built-in Isabelle tactics (such as the rule and simp tactics) except for the stmt_rel_tac
and progress_red_bpl_rel_tac tactics, which are general custom tactics that we defined and that we use

as part of automatically generated certificates. stmt_rel_tac (applied on line 143) is our general tactic for

automatically proving a forward simulation between a Viper statement and a Boogie statement. The term

stmt_body_hints given as an argument to stmt_rel_tac expresses (automatically generated) hints for the

stmt_rel_tac tactic for this particular example (see Subsection 3.5.4 for some details of this tactic and

corresponding hints).

3.5.7. A Snippet of a Concrete Certificate in Isabelle

To make clearer how our generated Isabelle certificates look at a high

level, consider Figure 3.29, which shows a snippet of an Isabelle cer-

tificate automatically generated by our tool for a concrete input Viper

program and corresponding Boogie program. This snippet shows an

Isabelle lemma (and corresponding proof), which expresses forward

simulations that imply Rel𝐺
𝐹,𝑀

(𝑚, 𝑝(𝑚)) for a concrete Viper method 𝑚

in the input Viper program and a concrete Boogie procedure 𝑝(𝑚) in

the corresponding Boogie program. This entire snippet is automatically

generated and Isabelle successfully checks it (and the remainder of

the certificate) automatically. In our generated certificate, the proof of

Rel𝐺
𝐹,𝑀

(𝑚, 𝑝(𝑚)) uses the lemma shown in the snippet.

This brings our discussion of the key ingredients involved in an appli-

cation of our general methodology presented in Section 3.4 to an end.

All of these ingredients are crucial in order to automatically generate

certificates for concrete front-end translations. We will now continue

with the non-technical part of the chapter, starting with the evaluation of

our certificate-producing instrumentation of the existing Viper-to-Boogie

translation.

3.6. Implementation and Evaluation 177

3.6. Implementation and Evaluation

We instrumented the existing Viper-to-Boogie verifier implementation

such that on every run the implementation automatically produces an

Isabelle certificate justifying the soundness of its translation to Boogie. We

evaluated this instrumented version on a diverse set of Viper benchmarks,

to check that our automation actually enables automatically-checkable

certificates in practice.

3.6.1. Implementation

Given an input Viper program, the Viper-to-Boogie implementation

passes the generated Boogie program to the Boogie verifier as a text file,

and our instrumented version of the implementation automatically gener-

ates a soundness certificate for this particular verifier run. Our approach

for generating the soundness certificate connects the input Viper AST as

represented by the Viper-to-Boogie implementation directly to the target

Boogie AST as represented by Boogie verifier. The alternative would have

been to connect the input Viper AST to the target Boogie AST representa-

tion used by the Viper-to-Boogie implementation itself. Our choice has

multiple advantages. First, we do not have to trust the Boogie parser that

parses the Boogie text file into the internal Boogie AST representation.

Second, our work in Chapter 2 already provides infrastructure for work-

ing with the internal Boogie AST representation (including generating

the Isabelle embedding of the Boogie AST representation). As a result,

we need not reimplement any infrastructure that deals with any Boogie

AST representation as part of our certificate-producing instrumentation

of the Viper-to-Boogie implementation, which saves some work. Third,

our approach generalises to verifier implementations that directly target

the Boogie verifier’s AST such as Dafny [3] (instead of passing the Boogie [3]: Leino (2010), Dafny: An Automatic
Program Verifier for Functional Correctness

file as a text file to Boogie). We discuss an advantage of the alternative

(connecting to the Boogie AST representation used by the Viper-to-Boogie

implementation) as part of future work in Subsection 3.9.4.

We make the following four adjustments to the Viper-to-Boogie imple-

mentation. First, we desugar its usages of polymorphic maps as described

in Subsection 3.3.6 on page 132, since there is no formal model for poly-

morphic maps. Second, we adjust the implementation to not emit Boogie

declarations or commands that are used only for features outside of

our subset (the original implementation always emitted those without

checking whether the corresponding features were actually used). Third,

we switch off simple syntactic transformations that the Viper-to-Boogie

implementation applies to the produced Boogie program (e.g. constant

folding, elimination of if-statements with no branches), since we do not

support them yet. Justifying those syntactic transformations should be

straightforward and is orthogonal to our work, because none of the three

main challenges that we discuss in Section 3.1 for front-end translations

arise for these transformations. Fourth, we introduce a havoc statement

in the Boogie program at the point when a scoped Viper variable is

introduced, which faithfully models the semantics of such a variable. The

original Viper-to-Boogie implementation instead just introduces a fresh

Boogie variable at the beginning of the Boogie procedure. The reason

for this fourth change is because forward simulations cannot capture the

178 3. Formally Validating Translations into an Intermediate Verification Language

Table 3.1: Overview of benchmarks and results. For each test suite, we report the number of Viper files, the

total number of Viper methods contained in those files, as well as the mean number of non-empty lines of

code for the Viper files, Boogie files, and produced Isabelle certificates. We measured the mean and median

time it took to check the Isabelle certificates in seconds.

Test suite Files Methods Viper Boogie Isabelle Cert. Check

no. no. Mean [LoC] Mean [LoC] Mean [LoC] Mean [s] Median [s]

Viper 34 105 33 298 1719 33.8 23.8

Gobra 17 65 60 287 1937 32.7 25.3

VerCors 18 116 63 332 2930 43.1 40.9

MPP 3 13 206 1060 5164 109.0 46.2

Overall 72 299 54 335 2217 39.0 32.9

translation otherwise. However, using a different simulation, proving

the equivalence of both translations is straightforward.
34

34: We discuss the generalisation of our

work to other simulations as part of fu-

ture work in Subsection 3.9.2.

3.6.2. Evaluation

Our evaluation answers the questions: (RQ1) Does our implementation

generate certificates that Isabelle can check successfully (and automat-

ically) for a diverse set of examples? (RQ2) Does Isabelle check the

generated certificates in reasonable time (e.g. is the check feasible as part

of continuous integration)?

To obtain a diverse set of representative examples, we considered the

Viper test suite as well as the test suites of three tools that produce Viper

code: Gobra [5] (for Go), VerCors [6] (for Java), and MPP [108] (a tool[5]: Wolf et al. (2021), Gobra: Modular
Specification and Verification of Go Programs
[6]: Blom et al. (2017), The VerCors Tool
Set: Verification of Parallel and Concurrent
Software
[108]: Eilers et al. (2018), Modular Product
Programs

performing a modular product transformation on Viper programs). To

eliminate trivial translations, we focused on Viper programs that use

the heap, as indicated by the occurrence of at least one accessibility

predicate. Out of those, we included all Viper programs that fall into our

supported Viper subset. We followed different strategies to systematically

obtain additional examples from the different test suites. For Viper

and MPP, we additionally considered files with three kinds of features

that we do not support: old-expressions, new-statements, and method

calls whose arguments are not variables (we currently support only

variables as method call arguments). We were able to bring these files

into our support subset as follows. We manually removed those parts that

contain old expressions (for instance, leading to the verification of weaker

postconditions, since old expressions often appear in postconditions).

We manually desugared new-statements into our subset (using scoped

variables and inhale statements). Finally, we manually made sure that

each argument to a method call is a variable (e.g. we rewrote m(i+1) to

var t := i+1; m(t)). For Gobra and VerCors, we removed boilerplate

code that is emitted for each file if the boilerplate code was not required

for the main example code (otherwise, we did not include the file). After

this removal and resulting selection, we followed the same process as

for Viper and MPP for old expressions, new-statements, and method

calls whose arguments are not variables. Moreover, we included files

generated by Gobra that had at most two occurrences of features outside

of our subset if those could be manually desugared into our subset (e.g.
eliminating a function by inlining its body).

3.6. Implementation and Evaluation 179

Table 3.2: Detailed results of our evaluation for a selection of files showing the number of methods, the

nonempty lines of code for the Viper program, Boogie program, and produced Isabelle certificate, and the

time it took to check the proof in seconds.

Test suite File Methods Viper Boogie Isabelle Cert. Check

no. Total [LoC] Total [LoC] Total [LoC] Total [s]

Viper testHistoryProcesses 13 205 1711 7035 126.3

Gobra defer-simple-02 9 211 853 4717 60.6

VerCors inv-test-fail2 5 92 514 2596 56.5

MPP banerjee 8 414 2014 9545 242.4

MPP darvas 2 91 582 2800 38.4

MPP kusters 3 112 583 3146 46.2

As summarised in Table 3.1, through the above process we collected

a total of 72 Viper files (containing 299 methods), with a mean of 54

non-empty lines of code per file. Among these 72 files, the file with

the most non-empty lines has 414 non-empty lines of code. We ran our

implementation on all 72 Viper files to generate the Boogie translations

and the Isabelle certificates, and measured the time it took for Isabelle

to check the generated certificates (the mean of five repetitions). The

measurements were run on a ThinkPad X1 Yoga Gen 5 on Ubuntu 20.04

with 16 GB RAM and i7-10510U @ 1.8 GHz (scaled up to 4.9 GHz using

Turbo Boost). The generated Boogie translations are on average 6.2x larger

(335 non-empty LoC on average), partially illustrating the semantic gap

between Viper and Boogie.

Isabelle successfully checked the generated certificates for all Viper files,

including the Viper programs automatically generated by other tools.

This shows that our approach is effective for practical verifiers and

answers RQ1 positively. The resulting Isabelle certificates have on average

over 2000 lines and are checked on average in less than a minute.

Out of the 72 files, the Viper-to-Boogie implementation successfully

verifies 26 files, and reports verification errors for the remaining 46 files.

This is expected since files in verifier test suites often contain expected

errors in some of the methods to test whether the verifier catches them.

Our generated certificates are useful in both cases (verification success and

verification failure). In case of verification success, our certificates formally

prove that the input Viper program is correct if the corresponding Boogie

program is correct (which is the case if the Boogie verifier is sound).

In case of verification failure, our certificates formally prove that if the

input Viper program is indeed incorrect (which need not be the case

due to incompletenesses), then the corresponding Boogie program is

incorrect. As a result, in this second case, our certificates guarantee that

even if we use a possibly more complete Boogie verifier implementation

compared to the actual one (e.g. using a more complete SMT solver), then

the Viper-to-Boogie implementation will not report verification success

for an incorrect Viper program (as long as this more complete Boogie

verifier implementation is sound). Finally, note that our generation and

checking of certificates is completely independent from whether the

Viper-to-Boogie verifier implementation reports success or failure (or

whether a Viper program is correct or not).

The detailed results for each evaluated example in each of the test suites

180 3. Formally Validating Translations into an Intermediate Verification Language

are shown in the appendix (App. A.1). Table 3.2 shows the detailed results

for some of the more complex examples: Table 3.2 contains the largest

example (in terms of lines of Viper code) from each of the test suites, and

contains the two remaining examples from MPP. These examples are

complex w.r.t. those considered in the evaluation due to their size and

due to the fact that the MPP examples are drawn from different research

papers. They show that our tool can certify challenging programs.

For this selection, the times to check the certificates range from 38 seconds

to 4 minutes. No file in any of the 72 files takes longer than 4 minutes

to check. These times are acceptable, since we expect the validation to

be performed occasionally (in particular, before the verified program is

released or as part of continuous integration), but not on every run of

the verifier. Thus, we answer RQ2 positively for the considered 72 files.

To obtain additional representative files from the test suites, we would

need to extend our supported Viper subset.

Most parts of our certificates are not yet optimised to make certificate

checking faster. For example, variable accesses currently result in an

overhead in the certificate that is linear in the number of active vari-

ables, respectively. As another example, we generate a lemma and a

corresponding proof for each declared field that states what its declared

type is, and then use these lemmas for different proofs in the certificate.

The time complexity for Isabelle to check such a particular lemma is

linear in the number of declared fields, since the declared fields are

represented via a list, and the proof needs to essentially look up the

field in this list by linearly going through the list. Both of these examples

(variable accesses and field proofs) could be improved by having more

efficient ways of representing data in the certificate. For instance, one

could represent variables (resp. fields) using a binary search tree, which

would make looking up a specific variable (resp. field) only logarithmic in

the number variables (resp. fields). The seL4 kernel verification code has

Isabelle infrastructure for using such a binary search tree representation

in proofs [98].[98]: seL4 Developers (n.d.), Efficient
lookup table creation in Isabelle

3.6.3. Trusted Components

Our certificate-producing version of the Viper-to-Boogie implementation

greatly reduces the parts of the verifier implementation that must be

trusted. In particular, if Isabelle successfully checks the generated cer-

tificate, then the code translating a Viper program to the corresponding

Boogie program need not be trusted.

However, there are still various components that must be trusted in order

to conclude that a certificate successfully checked by Isabelle actually

implies that the correctness of the Boogie program produced by the

Viper-to-Boogie implementation implies the correctness of the input

Viper program. These trusted components include:

▶ the soundness of the Viper parser that translates a source program

represented in text into Viper’s internal AST representation

▶ our deep embedding of the Viper AST representation in Isabelle

(including its semantics via our Viper language formalisation) must

reflect the input Viper program

3.6. Implementation and Evaluation 181

▶ our deep embedding of the Boogie AST representation in Isabelle

(including its semantics via our Boogie language formalisation)

must reflect the Boogie program

▶ the soundness of Isabelle

In Subsection 2.10.3 on page 88, we already discussed how one could

increase the trustworthiness of parsers and our deep embedding of Boogie

AST representations, and we also emphasised the trustworthiness of

Isabelle. The semantics of the embedded Viper program is a fundamental

trust assumption, which we cannot fully eliminate, since soundness is

defined w.r.t. this semantics. To increase the confidence in this semantics,

we can take similar measures as discussed for the Boogie semantics

in Subsection 2.10.3.

To conclude that a Viper program is correct for a successful verification

result under the assumption that the verification condition generated by

the Boogie verifier is valid, one could combine our generated certificate

for the Viper-to-Boogie implementation with our generated certificate for

the Boogie verifier implementation (the latter was presented in Chapter 2).

As we discuss in Subsection 3.9.5 on page 201, our work in Chapter 2 must

be extended to achieve this, but such an extension should not require

fundamental insights.

Viper’s type checker

The role of Viper’s type checker is analogous to the role of Boogie’s

type checker for certificates generated in Chapter 2 (see our discussion

on the Boogie type checker in Subsection 2.10.3). We need not trust

Viper’s type checker, since our certificates do not explicitly assume

that the input program is well-typed. However, since our semantics

accurately models only Viper programs that are well-typed, we could

weaken our trust assumption on the Viper semantics by proving

a type soundness result for our operational semantics. This would

increase our confidence in our Viper semantics if the input program

is well-typed, which we know is the case if we trust a successful result

by Viper’s type checker or if we automatically prove well-typedness.

Combining certificates with Viper as an IVL

Viper is mainly used as an IVL for some front-end. Most of these front-

ends directly construct a Viper AST as used by the Viper-to-Boogie

implementation without using any parser. As a result, the soundness

of the Viper parser is not relevant for most Viper front-ends. Even if

a Viper front-end uses a Viper parser, one need not trust the parser,

if one directly shows that the correctness of the front-end program

is implied by the correctness of the corresponding Viper encoding

as represented by the Viper AST representation used in the Viper-to-

Boogie implementation. Moreover, if one then connects such a result

between a front-end program and the Viper AST representation with

the certificate generated by our certificate-producing Viper-to-Boogie

implementation, then one also need not trust the Isabelle embedding

of the Viper AST representation and the Viper semantics. However,

one would have to trust the Isabelle embedding of the Boogie AST

representation and the Boogie semantics.

182 3. Formally Validating Translations into an Intermediate Verification Language

3.7. Related Work

Front-end soundness

Various works prove the soundness of front-end translations once and
for all. For instance, Lehner and Müller [27] prove a translation from[27]: Lehner et al. (2007), Formal Transla-

tion of Bytecode into BoogiePL
Java Bytecode to Boogie, Vogels et al. [28] target a translation from a toy

[28]: Vogels et al. (2009), A Machine
Checked Soundness Proof for an Interme-
diate Verification Language

object-oriented programming language to Boogie, and Gössi [30] targets

[30]: Gössi (2016), A Formal Semantics for
Viper

a translation from Chalice [109, 110] to Viper. These proofs are done on

[109]: Leino et al. (2009), A Basis for Veri-
fying Multi-threaded Programs
[110]: Leino et al. (2009), Verification of
Concurrent Programs with Chalice

paper and do not consider an actual implementation of the translation.

Backes et al. [29] prove a translation sound from the Dminor data

[29]: Backes et al. (2011), Automatically
Verifying Typing Constraints for a Data Pro-
cessing Language

processing language to the Bemol IVL in Coq. They do not provide a proof

connecting the formalised translation to their F# implementation. In work

not presented in this dissertation, we prove a translation from a simple

concurrent language to Viper sound in Isabelle [45]. This translation does

[45]: Dardinier et al. (2025), Formal Foun-
dations for Translational Separation Logic
Verifiers

not reflect an actual implementation used in practice; thus many of the

challenges that we tackle in this chapter do not show up there. However,

this translation encodes a front-end program logic into the IVL, which is

common for translations into Viper. The corresponding soundness proof

of this translation connects a front-end program logic with an axiomatic
semantics of the IVL. In contrast, this chapter’s approach connects a front-

end operational semantics with an IVL operational semantics, which

fits better for translations such as the Viper-to-Boogie translation that

essentially encode the operational semantics, but is less convenient for

translations that encode a program logic into the IVL; we discuss this as

part of future work (Subsection 3.9.3 on page 200). Summers and Müller

[111] and Wolf et al. [112] present more intricate translations used by[111]: Summers et al. (2020), Automating
deductive verification for weak-memory pro-
grams (extended version)
[112]: Wolf et al. (2022), Concise outlines
for a complex logic: a proof outline checker
for TaDA

implementations that also encode front-end program logics into Viper.

They reason about front-end soundness via proof sketches on paper,

which explore only the high-level reasoning principles and thus avoid

many of the complexities involved in a fully formal proof. Herms [25]

[25]: Herms (2013), Certification of a Tool
Chain for Deductive Program Verification

proves a translation from C to the WhyCert IVL (inspired by the Why3

IVL) sound in Coq, which they then turn into an executable tool via

Coq’s extraction to OCaml. The resulting tool has similarities to the Jessie

Frama-C implementation [113], which translates C programs to Why3;[113]: Marché et al. (2018), The Jessie plugin
for Deductive Verification in Frama-C

Herms [25] discusses mismatches between their mechanisation and the

Jessie implementation. In contrast, as we have shown, our certification

methodology can be applied to existing front-end implementations,

which are typically implemented in efficient mainstream programming

languages, use diverse libraries, and include subtle optimisations omitted

from idealised implementations.

Internal program transformations

As discussed in Chapter 1, translational verifiers perform a series of

program transformations, e.g. by translating programs to a lower-level

IVL or internally without changing the language (e.g. monomorphisation,

or transformations such as those presented in Chapter 2). Our approach

in this chapter can in principle be applied to both kinds of transforma-

tions, but is tailored towards the former, where the semantic gap is large,

non-local checks arise, and diverse translations are used. Existing work

for the validation of internal transformations does not provide solutions

3.7. Related Work 183

for these challenges. For instance, our work in Chapter 2 validates the

verification condition (VC) generation implementation of Boogie pro-

grams, which includes some internal Boogie-to-Boogie transformations.

In these transformations, the semantic gap is small (the source and target

constructs are largely the same), and thus the decomposition into smaller

problems is immediate, while in this chapter the decomposition is a

challenge. Moreover, Chapter 2 need not deal with non-local checks and

diverse translations.

The work in Chapter 2 tackles different challenges for the internal

transformations that requires the use of different kinds of simulations.

For instance, the certification of assignment elimination tracks a set

of Boogie states for a single Viper state, which cannot be captured

by the kind of forward simulations we use in this chapter; it would be

interesting future work to apply this chapter’s methodology to other kinds

of simulations such as the one used for assignment elimination. Besides

internal transformations, Chapter 2 connects a Boogie program and

the corresponding VC; this chapter considers only program-to-program

transformations.

Another difference is that for the cycle elimination and assignment

elimination transformations in Chapter 2 it seems that per-run validation

is significantly easier than proving the transformations once and for

all. The reason is that various nontrivial computations performed by

Boogie and properties ensured by Boogie for these transformations

need not be explicitly reflected in the generated certificates. These are

instances where a nontrivial computation produces a result that can be

validated without knowing how the computation was performed, and

where a property can be implicitly validated and used without needing

to explicitly state the property. An example of the former is Boogie’s

nontrivial computation of back edges. The generated certificate does

not need to know how Boogie eliminates back edges, but just needs to

ensure that the back edges that were computed are the correct ones. An

example of the latter is the property that the source and target CFGs of

Boogie’s assignment elimination must be acyclic. This property is never

explicitly stated, but the generated certificate implicitly makes sure that

the source and target CFGs are indeed acyclic (otherwise, the certificate

is not valid and Isabelle would thus fail to check it). For the Viper-to-

Boogie implementation applied to our considered Viper subset there

were no such instances. Nevertheless, as we discuss in Chapter 1, per-run

validation still has a major advantage over once-and-for-all proofs, since

it is easier to provide formal guarantees for existing implementations, as

we do for the Boogie and Viper verifier implementations, and is a general

goal of this dissertation.

Finally, the work in Chapter 2 can in principle be combined with work in

this chapter to enable end-to-end soundness guarantees for Viper, but this

would require extending the Boogie verifier validation to an additional

internal Boogie transformation (i. e. the dead variable elimination) and

to a larger Boogie subset (see Subsection 3.9.5 on page 201 for more

details).

184 3. Formally Validating Translations into an Intermediate Verification Language

Forward simulation automation

Multiple works also embed programs in an interactive theorem prover

(ITP) and then automate forward simulation proofs. Rizkallah et al. [114][114]: Rizkallah et al. (2016), A Framework
for the Automatic Formal Verification of Re-
finement from Cogent to C.

define a refinement calculus for the Cogent compiler to automatically

prove a forward simulation in Isabelle for a Cogent expression and its

C translation. Their calculus includes syntax-directed rules for deriving

simulation judgements, but these rules do not provide the abstraction we

needed to handle diverse translations. For instance, their calculus does not

provide the abstraction needed to use the same set of rules for justifying

different translations of the same construct that are possibly justified by

non-local checks. Our rules achieve this abstraction by allowing changes

to the state relation as part of a simulation proof; additionally, we provide

a systematic way of making these adjustments. The Cogent compiler was

developed with validation in mind: for instance, the compiler applies

transformations to the input Cogent program before translating a Cogent

representation to a C representation (which is the translation handled

by the refinement framework), making sure that this translation step to

C is kept simple, which simplifies validation. In contrast, our goal was

to validate existing verifier implementations with all their intricacies. It

would be an interesting research direction to investigate how to develop

verifier implementations such that their validation is simpler.

The verification of the seL4 kernel includes two large forward simulation

proofs in Isabelle, for which proof automation was developed [115–

117]. This automation reduces the manual proof overhead, but still[115]: Winwood et al. (2009), Mind the Gap
[116]: Cock et al. (2008), Secure Microker-
nels, State Monads and Scalable Refinement
[117]: Klein et al. (2010), Refinement in the
Formal Verification of the seL4 Microkernel

requires user interaction. In contrast, our validation certificates are

generated and checked completely automatically. Like us, the authors

of those works prove rules to decompose the simulation for composite

statements syntactically but, contrary to us, do not decompose statements

semantically into smaller simulations. They use standard Hoare triples,

for which they have separate automation, for different purposes. For

instance, they reduce the proof of certain simulation judgements to proofs

of Hoare triples, and they use Hoare triples to express properties on

the source program (resp. target program) in premises of some of their

rules.

Compilers

Translation validation [118] approaches for compilers define a per-run val-[118]: Pnueli et al. (1998), Translation Vali-
dation

idator, which checks whether the compilation is sound. Formal translation

validation additionally proves the correctness of the validator formally

using an interactive theorem prover (ITP) w.r.t. a formalised semantics

for the source and target program. One common formal approach is

to express and prove the correctness of the validator once and for all
in the ITP (instead of generating a certificate in the ITP), and then to

extract executable code for the validator (the extraction must typically

be trusted). This approach is used, for example, for some compilation

passes in the CompCert C compiler project [37, 38, 41]

[37]: Tristan et al. (2008), Formal verifica-
tion of translation validators: a case study on
instruction scheduling optimizations
[38]: Tristan et al. (2009), Verified valida-
tion of lazy code motion
[41]: Gourdin et al. (2023), Formally Veri-
fying Optimizations with Block Simulations

and also for LLVM

optimisations [40]

[40]: Kang et al. (2018), Crellvm: verified
credible compilation for LLVM

, both of which are formally proved in Coq. One aspect

that distinguishes the validator developed for LLVM optimisations [40]

is that the validator uses a credible compilation approach [119]

[119]: Rinard et al. (1999), Credible Compi-
lation with Pointers

, where a

3.7. Related Work 185

general relational program logic, which is not tied to a specific transla-

tion, is proved sound, and the validator tries constructing a proof in this

relational logic.

For many validators that are formally justified, the source and target

languages are similar. In contrast, Sewell et al. [120] use a combination of [120]: Sewell et al. (2013), Translation vali-
dation for a verified OS kernel

different approaches (e.g. using two different ITPs and an SMT solver) to

define a validator for a translation where the source and target language

are very different: they validate the GCC compiler translation from C

to binary code. In particular, the final part of the validator relies on a

refinement proof using an SMT solver.

It would be interesting to explore the feasibility of extracting a validator

from an ITP to executable code for front-end translations, where the

semantic gap between the languages is large. One difference to compiler

transformations is that front-end translations incorporate reasoning steps,

such as assumptions and proof obligations prescribed by a program logic.

This encoding is achieved via components not present in executable

languages such as assume statements, havoc statements, and background

axiomatisations. Moreover, front-end translations emit code that checks

nontrivial properties that are then relied upon in other parts of the

encoding.

Validation of verifier implementations

Validation has also been used to obtain formal guarantees for imple-

mentations of verifiers, but none of the existing works target front-end

translations and the challenges they entail. Lin et al. [48] and Wils and [48]: Lin et al. (2023), Generating Proof Cer-
tificates for a Language-Agnostic Deductive
Program Verifier

Jacobs [46] validate verifiers obtained via the K framework (by gener-

[46]: Wils et al. (2023), Certifying C pro-
gram correctness with respect to CH2O with
VeriFast

ating Metamath certificates on every run) and VeriFast (by generating

Coq certificates on every run), respectively. These verifiers use symbolic

execution, which works very differently compared to translations in trans-

lational program verifiers. As a result, the applied validation approaches

differ fundamentally from our validation approach. Garchery [35] vali- [35]: Garchery (2021), A Framework for
Proof-carrying Logical Transformations

dates certain logical transformations in Why3. Cohen and Johnson-Freyd

[36] also prove such logical transformations, but do so once and for all [36]: Cohen et al. (2024), A Formalization
of Core Why3 in Coq

in Coq to demonstrate their Why3 mechanisation. Neither of the two

consider the actual verification condition generation.

Formal results for Viper

In work not presented in this dissertation that explores a complementary

research direction, we formalise the semantics for a generic IVL in

Isabelle, which includes inhale and exhale statements, and which has

various parameters such as the state model [45]. This semantics was [45]: Dardinier et al. (2025), Formal Foun-
dations for Translational Separation Logic
Verifiers

designed to be independent from back-end verifiers for Viper (such as

the Viper-to-Boogie implementation) and suitable to reason about the

soundness of front-end translations into Viper. As part of the Isabelle

mechanisation, the parameters of this generic IVL are instantiated to

obtain a subset of Viper with an accompanying Viper semantics (that

we call ViperCore here), which comes in two flavours: an operational

semantics that is suitable for the connection to a Viper back-end and

186 3. Formally Validating Translations into an Intermediate Verification Language

an equivalent axiomatic semantics that is suitable for reasoning about

front-end translations into Viper.

The ViperCore semantics abstracts away Viper back-end verifier details.

This is in contrast to the semantics formalised in this chapter, which

exposes some details of the Viper-to-Boogie translation in order to

simplify the validation as discussed in Subsection 3.2.8 on page 122.

One detail exposed in the semantics formalised in this chapter is that

nondeterministic heap assignments are performed as part of an exhale

instead of an inhale. This is slightly unintuitive, because the property

one needs is that whenever an inhale operation obtains permission

to a heap location for which there was no permission before, then the

semantics must consider every possible heap value for this location.

ViperCore instead performs nondeterministic heap assignments at an

inhale, which is more intuitive. Moreover, ViperCore uses a partial heap

model instead of a total heap model used in this chapter’s semantics;

as a result, when exhaling all the permission to a heap location, the

corresponding location is removed from the domain of the partial heap.

There is a formal soundness proof connecting the two semantics [45],[45]: Dardinier et al. (2025), Formal Foun-
dations for Translational Separation Logic
Verifiers

which shows that correctness w.r.t. the semantics formalised in this

chapter implies correctness w.r.t. ViperCore. This result provides further

confirmation that this chapter’s semantics is a valid one, and also provides

further confirmation that ViperCore’s semantics is a valid one (since this

result combined with our certificates shows that ViperCore captures the

existing Viper-to-Boogie translation).

Another difference between ViperCore and this chapter’s semantics is the

following: in ViperCore, inhale and exhale are expressed with semantic
assertions as input (specifying when an assertion is satisfied) instead of the

syntactic assertions used in our case. That means inhale and exhale are

not specified themselves operationally as in this chapter’s semantics. This

chapter’s semantics operationally traverses the syntactic input assertion

from left to right, which accurately captures the meaning of permission

introspection as part of inhale and exhale (permission introspection

is currently not compatible with ViperCore). As a result, ViperCore’s

semantics can be used with any assertion as long as one can express the

satisfaction of that assertion semantically (i. e. as a function from states to

Booleans).

To use ViperCore for concrete Viper programs, an interpretation function

is provided that transforms syntactic Viper expressions and assertions into

their semantic counterparts. Currently, this function supports the entire

subset formalised in this chapter except for permission introspection.

Providing an interpretation such that inhale and exhale are modelled

accurately when assertions have permission introspection is not directly

possible in the current setup. Additionally, the interpretation function

supports wildcard permission amounts in accessibility predicates (i. e.
existentially quantified permissions). The interpretation function for

the separating conjunction states that a state 𝜎𝑣 satisfies 𝐴 && 𝐵 if 𝜎𝑣
can be split into two states (in terms of the permissions) such that 𝐴 is

satisfied in one state and 𝐵 is satisfied in the other. Such a definition

more directly reflects the original separating conjunction definition from

separation logic. Moreover, it ensures that the separating conjunction

is commutative, which is not the case in the semantics defined in this

chapter. For instance, inhale x.f == 2 && acc(x.f, 1/2) fails in the

3.7. Related Work 187

semantics defined in this chapter in a state without any permissions, while

it would not fail in the ViperCore inhale. However, the Viper verifier

cannot verify this inhale since the verifier decomposes the assertion

from left to right, so our semantics is accurate enough. Moreover, note

that the ViperCore interpretation for separating conjunctions does not

capture permission introspection, since permission introspection requires

a left-to-right decomposition.

ViperCore includes a subset of Viper statements formalised in this chapter

and additionally includes a havoc command (analogous to the Boogie

havoc command), but the statements that ViperCore does not support

(but which this chapter does) are expressible via the others. In particular,

ViperCore does not support method calls and assert statements, both

of which are expressible via inhale and exhale (and havoc for calls that

return results).

Gössi [30] provided the first formal operational Viper semantics on paper, [30]: Gössi (2016), A Formal Semantics for
Viper

which is at a similar abstraction layer as the formal Viper semantics

defined in this chapter
35

and targets a larger subset than us (e.g. in- 35: For instance, their semantics also

uses a total heap and nondeterministi-

cally chooses values for heap locations

as part of exhale but not inhale.

cluding predicates, functions, and wands). They prove the soundness

of a translation from Chalice [109, 110] to Viper w.r.t. their semantics.

[109]: Leino et al. (2009), A Basis for Veri-
fying Multi-threaded Programs
[110]: Leino et al. (2009), Verification of
Concurrent Programs with Chalice

Their work is a good first attempt at formalising the Viper semantics,

which helped gain a better understanding for Viper. We have since learnt

various lessons that led to a different semantics and to different ways of

formalising Viper features.

In the following, we discuss one example where we took a different deci-

sion and one example for a feature outside of our formalised subset where

we would take a different decision. In their semantics, exhale 𝐴 && 𝐵 is

defined as the sequential composition of exhale 𝐴 and exhale 𝐵. That

is, there is not a separate operation (such as remcheck 𝐴 && 𝐵 in our

case) that first removes all the permissions without changing the heap

and only then chooses values for heap locations nondeterministically.

Such a semantics does not accurately capture Viper, since it, for example,

makes exhale acc(x.f) && x.f > 0 always fail, as x.f would always be

evaluated in a state without permission to x.f. A second example is the

treatment of Viper predicates (a feature outside of our formalised subset).

As we discovered and will discuss in Subsection 3.9.1 on page 195, to

accurately capture predicates, a Viper semantics must extend the state

consistency notion (or must do something similar). Otherwise, the result-

ing semantics cannot, for instance, justify the existing Viper-to-Boogie

translation. Their semantics does not take this extended consistency

notion into account. This latter point also motivates a fairly different

formalisation of Viper predicates in general, which we are currently

exploring. The high-level idea is to add more information on predicates

to the state model: in particular, reflecting the recursive structure of the

predicates directly in the state.

Viper supports two back-end verifiers: the Viper-to-Boogie implemen-

tation, which this chapter makes certifying for a Viper subset, and a

symbolic execution back-end. There are various formalisations of the

symbolic execution back-end. Schwerhoff [121] formalises the core parts [121]: Schwerhoff (2016), Advancing Auto-
mated, Permission-Based Program Verifica-
tion Using Symbolic Execution

of the symbolic execution back-end for a substantial Viper subset on

paper (e.g. predicates and iterated separating conjunctions in addition

to our formalised subset). In work not presented in this dissertation, we

188 3. Formally Validating Translations into an Intermediate Verification Language

mechanise a subset of the symbolic execution back-end in Isabelle [45][45]: Dardinier et al. (2025), Formal Foun-
dations for Translational Separation Logic
Verifiers

in which certain implementation details are abstracted away compared

to the model formalised by Schwerhoff [121]. Moreover, we formally

prove this back-end is sound w.r.t. the ViperCore semantics. Zimmerman

et al. [44] provide an alternative formalisation of the symbolic execution[44]: Zimmerman et al. (2024), Sound
Gradual Verification with Symbolic Execu-
tion

back-end for a subset of Viper on paper, but they extend the formalisation

to additionally deal with gradual specifications. They use this formalisa-

tion to prove soundness of the gradual verifier Gradual C0 [122], which[122]: DiVincenzo et al. (2022), Gradual
C0: Symbolic Execution for Efficient Gradual
Verification

uses the Viper symbolic execution back-end extended with support for

gradual specifications.

Finally, there are further works that provide a formal justification for a

variety of aspects related to Viper. Dardinier et al. [123] provide a formal[123]: Dardinier et al. (2022), Fractional
resources in unbounded separation logic

model for fractional predicates as used in Viper (and VeriFast [89]). In

[89]: Jacobs et al. (2011), VeriFast: A Pow-
erful, Sound, Predictable, Fast Verifier for C
and Java

work not presented in this dissertation, we prove a novel automation

approach for magic wands (a separation logic connective) sound [65],

[65]: Dardinier et al. (2022), Sound Au-
tomation of Magic Wands

which we then apply to Viper, and we prove that (bounded) method call

inlining and loop unrolling is verification preserving in automated SL

verifiers (including Viper) under certain conditions [64].
[64]: Dardinier et al. (2023), Verification-
Preserving Inlining in Automatic Separation
Logic Verifiers

Other related work

Boogie developers have added an option to monomorphise polymorphic

maps in Boogie programs via non-polymorphic maps [99]. This option[99]: Qadeer (2022), Monomorphization of
polymorphic maps and binders

provides an alternative to ours for desugaring polymorphic maps, which,

in the case of Viper, circumvents the circularity challenge discussed

in Subsection 3.3.6, since Viper does not permit storing heaps in fields.

However, in general, front-ends may permit storing heaps in fields.

Smans et al. [33] prove soundness once and for all on paper of a verification[33]: Smans et al. (2012), Implicit Dynamic
Frames

condition generator for a language with implicit dynamic frames (IDF)

assertions that does not use an IVL. They also implement a prototype,

but do not formally connect the proof to the implementation. We also

applied our methodology to a verifier based on IDF, but validate an

actual implementation.

3.8. Impact of Work on Viper

The work in this chapter, which led to a certificate-producing Viper-

to-Boogie verifier implementation, had a positive impact on the Viper

ecosystem. A large part of this positive impact was a result of needing to

deeply understand the Viper language and the Viper-to-Boogie imple-

mentation in order to produce certificates. Our positive impact can be

categorised into four dimensions. First, we improved the Boogie encoding

generated by the verifier such that the encoding is easier to understand

for developers of the verifier and also such that errors reported by the

verifier are more intuitive for Viper users. Second, we improved the

Viper-to-Boogie implementation (e.g. by removing functionality that was

duplicated or by simplifying code). Third, we identified two soundness

bugs. One of these was within our formalised Viper subset, which we

fixed [124]. The other one was a subtle bug outside of our formalised[124]: Parthasarathy (2023), Include de-
finedness checks during exhale (Pull Request
457)

subset, which we documented but which has not yet been fixed because

3.8. Impact of Work on Viper 189

fixing the bug requires answering design questions for Viper [125]. This [125]: Parthasarathy (2024), Viper allows
predicates whose fractional amount is not
self-framing (Issue 809)

bug arises in a corner case that likely does not impact practical Viper

programs, but fixing the bug is still important and will improve Viper as

a language due to the design questions that arose as a result of this bug.

We will discuss both of these soundness bugs in more detail later in this

section. Fourth, we noticed that the semantics of a feature outside of our

formalised Viper subset (unfolding expressions) is unclear in combination

with permission introspection [126]. This lack of clarity does not impact [126]: Parthasarathy (2023), The semantics
of permission introspection in the body of
unfolding expressions is unclear (Issue 682)

practical Viper programs, but resolving the meaning of this combination

is important for clarifying the meaning of both features and also will

help future use cases that may rely on this combination.

It is particularly interesting that our work had impact beyond the for-

malised subset. This is partially because we always tried to keep Viper as

a whole in mind even though we finally focused on a core subset, because

our goal is to eventually support the entire subset. However, another

reason is that the work on our core subset made certain questions explicit

for which we had to find answers formally, and as a result it was natural

to ask the same questions for features outside of our subset.

In this section, we highlight some of the concrete instances where our

work had a positive impact. First, we discuss the encoding of well-

definedness checks performed as part of an exhale and inhale. The

improvements affected the first three dimensions (encoding, implemen-

tation, soundness). Second, we discuss two encoding improvements, one

of which we implemented and another for which our work would be

important to ensure soundness. Third, we present the discovered sound-

ness bug outside of our formalised subset. We do not discuss the fourth

dimension in this section (unclear semantics of a Viper feature). Instead,

we refer interested readers to the corresponding GitHub issue [126],

which explains why the semantics of permission introspection is unclear

in the presence of unfolding expressions.

3.8.1. Well-Definedness Checks for exhale and inhale

exhale results in failure if an expression evaluated during the cor-

responding reduction is ill-defined. As a result, the Viper-to-Boogie

implementation emits well-definedness checks in the Boogie encoding

for each of these expressions except in optimised cases such as the exhale

of a method call precondition. Before our work, the implementation en-

coded the well-definedness of expressions as follows for exhale 𝐴. In

a first step, the implementation emitted well-definedness checks for all

expressions in 𝐴 without performing the removal of the permissions,

and then, in a second step, the implementation encoded the removal of

the permissions without performing the well-definedness checks. This

does not directly correspond to the semantics formalised in this chapter,

which checks whether expressions are well-defined on the fly (i. e. as part

of the evaluation of each expression). As a result, this prior encoding

has two downsides: (1) if exhale 𝐴 fails, then in certain cases the user is

presented with unintuitive error messages, and (2) the encoding can be

unsound in the presence of permission introspection.

The following example illustrates the first downside (unintuitive error

messages):

190 3. Formally Validating Translations into an Intermediate Verification Language

exhale acc(x.f) && 0/0 == 0/0

Suppose this exhale is executed in a state without any permissions.

Then, this exhale fails because there is insufficient permission for the

first conjunct. However, the error reported using the prior encoding was

that 0/0 is ill-defined due to the division by 0. While it is true that the

assertion syntactically contains a division by 0 and division by 0 leads to

failure, the semantics of this exhale never evaluates the division, because

failure is already reached in the first conjunct. Moreover, for most Viper

users, reporting that there is insufficient permission is more intuitive,

because Viper users think of the exhale as traversing the assertion from

left to right, which matches the semantics formalised in this chapter.

The following example illustrates the second downside (unsoundness):

inhale acc(x.f)

exhale acc(x.f) && (perm(x.f) == none ==> 0/0 == 0/0)

Suppose this statement is executed in a state without any permissions.

Then, the exhale fails in our formalised semantics, because perm(x.

f) evaluates to zero (since the permission to x.f has been removed

by the first conjunct) and thus the right-hand side of the implication

is evaluated, which fails due to the division by 0. However, the prior

encoding generated a Boogie program that is correct, which means the

encoding is unsound. The reason is that the prior encoding checked well-

definedness of all expressions without taking the removal of permissions

into account. That means, in the prior well-definedness check encoding,

perm(x.f) evaluates to 1 and thus since the left-hand side evaluates

to false, the right-hand side is never evaluated. Thus, the generated

Boogie program is correct. In summary, the prior encoding did not

correctly reflect that even for well-definedness checks, the meaning of a

permission introspection instance evaluated during an exhale depends

on the permissions removed up to that point.

To fix both of these issues, we changed the implementation of exhale

to include the well-definedness checks on-the-fly [124]. Moreover, we[124]: Parthasarathy (2023), Include de-
finedness checks during exhale (Pull Request
457)

added a flag to the Scala method implementing this functionality to allow

switching off the well-definedness checks entirely (e.g. for the optimised

method call encoding).

For the prior implementation ofinhale such issues did not arise. However,

the implementation had separate Scala methods for encoding the inhale

with well-definedness checks and without well-definedness checks. We

merged these implementations and also added a flag [127], which signif-[127]: Parthasarathy (2022), Move well-
definedness checks during inhale into In-
haleModule and use new terminology (Pull
Request 407)

icantly reduced duplication and made the code more understandable.

Although this could have been done before, the simplification became

clear due to insights regarding interactions with well-definedness checks,

as uncovered by our work.

3.8.2. Simple and Effective Encoding Improvements

Well-definedness check ordering

Prior to our work, the implementation checked the well-definedness of

certain expressions in an unintuitive order. For instance, for a field access

3.8. Impact of Work on Viper 191

𝑒. 𝑓 , the implementation first emitted Boogie code to check whether

there is permission to 𝑒. 𝑓 followed by Boogie code to check whether 𝑒 is

well-defined. This led to unintuitive error messages. For instance, for the

expression x.f.f in a state without any permissions, the verifier reported

that there was insufficient permission to x.f.f. This error message is

unintuitive because the location x.f.f has no meaning, since x.f itself

is ill-defined. A more intuitive error message is to report that there

is insufficient permission to x.f. We fixed this by changing the order

of well-definedness checks and did so also in other similar cases [128,

129]. This adjustment also simplifies validation, because the semantics [128]: Parthasarathy (2023), Refactor well-
definedness of field acesses and permission
division (Pull Request 451)
[129]: Parthasarathy (2022), Well defined-
ness checking order fixes (Pull Request 429)

formalised in this chapter first checks well-definedness 𝑒 before checking

whether there is sufficient permission to 𝑒. 𝑓 .

As part of this fix, we also simplified the code. Not every subexpression

of the form 𝑒. 𝑓 in the AST needs to be checked to be well-defined. For

instance, in acc(𝑒. 𝑓 , 𝑝), the field access 𝑒. 𝑓 need not be checked to be

well-defined (𝑒 and 𝑝 need to be checked to be well-defined). The prior

implementation distinguished these cases using global state that was

hard to understand. In our fix, we eliminated this global state and instead

used code that is easier to follow. This elimination of global state also

made it easier to first check well-definedness of 𝑒 before checking whether

there is sufficient permission to 𝑒. 𝑓 . While this simplification and the

changing of the well-definedness check order could in principle have

been made along, our investigation into the implementation uncovered

the corresponding issues.

An extra optimisation

As we discussed in Subsection 3.3.3 on page 127, the Viper-to-Boogie

implementation encodes the exhale of a method call precondition and

the inhale of a method call postcondition in an optimised fashion: well-

definedness checks for expressions are omitted, which is justified by the

specification well-formedness checks emitted by the implementation for

each method. We noticed that the optimisation could go even further: for

accessibility predicates, the nonnegativity check on the corresponding

permission amount can be omitted as well, because well-formedness

of the specification guarantees that these never fail. We have not yet

implemented this optimisation, but our certification approach could be

used to ensure that this optimisation is indeed sound.

3.8.3. Self-Framing Predicates

We will now discuss the soundness bug that we found outside of our

formalised subset. To present this bug, we first need to present some

background on predicate definitions in Viper, which are inspired by ab-
stract predicates originally introduced for separation logic [130]. Predicate [130]: Parkinson et al. (2005), Separation

logic and abstraction
definitions in Viper (which are not part of our formalised subset) are

top-level definitions, where the body of each such definition is a Viper

assertion. Predicates represent permissions abstractly via a predicate

instance. A common use case of predicates is to represent permissions to

a statically unbounded number of heap locations via recursive predicate

definitions (e.g. permissions to all the heap locations of a linked list).

192 3. Formally Validating Translations into an Intermediate Verification Language

To keep things simple, we will consider only non-recursive predicate

definitions. An example for such a non-recursive predicate definition

is:

predicate P(x: Ref) {

acc(x.f) && x.f > 0

}

With this definition, one can use the predicate instance acc(P(x)) as a

Viper assertion (e.g. as part of a Viper method specification or aninhaleor

exhale). acc(P(x)) essentially guards the predicate body assertion. More

generally, Viper treats predicates isorecursively [107]. That is, Viper treats[107]: Summers et al. (2013), A Formal
Semantics for Isorecursive and Equirecursive
State Abstractions

predicate instances as opaque resources in the Viper state; the permissions

and heap information specified in the corresponding predicate bodies

are not directly accessible. For instance, reading or writing to x.f would

fail even if acc(P(x)) were held in the state with the predicate definition

given above. However, Viper has a primitive statement that makes the

assertion guarded by the predicate instance directly accessible: Viper’s

unfold statement exchanges a predicate instance for its body. Moreover,

Viper has a primitive statement that guards the predicate body within a

predicate instance: Viper’s fold statement exchanges the predicate body

for its corresponding predicate instance. An unfold roughly corresponds

to exhaling the predicate instance and then inhaling the predicate body,

and a fold roughly corresponds to exhaling the predicate body and

then inhaling the predicate instance. An isorecursive predicate approach

with explicit unfold and fold statements is standard for automated

separation logic verifiers such as Viper in order to avoid heuristics for

how to inspect predicate definitions.

Viper also supports fractional amounts of predicate resources [123]. For[123]: Dardinier et al. (2022), Fractional
resources in unbounded separation logic

instance, acc(P(x),1/2) guards half of the permissions specified by

P(x), which means that acc(P(x),1/2) guards the assertion acc(x.f

,1/2) && x.f > 0 with the definition given above.

Let us now focus on the key requirement that Viper imposes on predicate

definitions, which forms the source of the soundness bug. Viper requires

that predicate bodies specified in predicate definitions are self-framing.
36

36: The notion of self-framing asser-

tions is common for implicit dynamic

frames [33, 101].

Intuitively, this means that the assertion itself contains all the permissions

needed for the heap locations its validity depends on. The intuition for

this requirement is that Viper needs the following property: if a predicate

instance is held in a state, then changes to heap locations not guarded

by the predicate instance should not affect the validity of the instance’s

guarded predicate body. Otherwise, held predicate instance could be

invalidated by field assignments, since it would be possible to obtain full

permission to a heap location whose evaluation affects the validity of

the corresponding predicate body. (As we will see below, Viper’s current

self-framing requirement is not strong enough to guarantee this property

for all predicate instances, which is the reason for the soundness bug.)

In our formal semantics, one can express this requirement formally by

saying that inhaling the assertion cannot fail starting from any state.
37

37: This is how we, for instance, defined

the well-formedness of a method specifi-

cation in Definition 3.3.1 on page 129. The problem that we discovered is the following. In general, if a specified

predicate body 𝐴 is self-framing, then this does not imply that each

assertion representing some fractional amount of 𝐴 is self-framing, too.

Thus, the body guarded by a fractional predicate instance may not be

self-framing. As a result, the needed property does not always hold for

3.8. Impact of Work on Viper 193

field f: Int
field g: Int

predicate R(x: Ref, y: Ref) {
acc(x.f) && acc(y.f) && (x == y ==> y.g > 0)

}

method main(a: Ref)
requires acc(a.g) && acc(a.f)
ensures false

{
a.g := 1
fold acc(R(a,a),1/2)
a.g := -1
unfold acc(R(a,a),1/2)

}

Figure 3.30: A Viper program showing why the requirement that predicate bodies must be self-framing is not

strong enough and leads to unsoundness.

fractional predicate instances, which leads to the soundness bug. The

following predicate definition provides an example:

predicate R(x: Ref, y: Ref) {

acc(x.f) && acc(y.f) && (x == y ==> y.g > 0)

}

This predicate body is self-framing and thus accepted by Viper. The

reason the body is self-framing even though the right-hand side of the

implication contains a heap location to which no permission is specified

is the following. Inhaling the first two conjuncts must lead to a normal or

magic outcome, and never to failure, since the receivers and permission

amounts are always trivially well-defined (and the permission amounts

are never negative). If a normal outcome is reached after inhaling the first

two conjuncts, then x and y must be different, otherwise a magic outcome

would be reached since the permission mask would be inconsistent. As a

result, the left-hand side of the implication evaluates to false, and thus the

right-hand side of the implication is never evaluated, which makes the

body self-framing. However, the following assertion, which is guarded

by the predicate instance acc(R(x,y),1/2), is not self-framing:

acc(x.f,1/2) && acc(y.f,1/2) && (x == y ==> y.g > 0)

Inhaling this assertion in a state with no permissions and where x equals

y leads to failure. In this case, a normal outcome is reached after inhaling

the first two conjuncts, and the right-hand side of the implication is

evaluated, which leads to failure since there is no permission to y.g.

The question that remains is whether this problem leads to an unsound-

ness. That is, is there a program successfully verified by the Viper verifier,

which should not be successfully verified? The answer is yes, and one

such program is shown in Figure 3.30. The Viper verifier verifies the

program successfully, but it should not. First, let us discuss why the

program should not be verified successfully and then let us discuss

why the verifier successfully verifies the program. The program should

not be verified, because it has a single method main with a satisfiable

194 3. Formally Validating Translations into an Intermediate Verification Language

precondition and an unsatisfiable postcondition (i. e. false). Moreover,

main only performs (1) heap assignments, which always result in normal

outcomes, and (2) a fold statement, which just shields previously held

permissions behind a predicate instance and an unfold statement, which

essentially just reverses the previous fold statement. So, neither of these

two points should lead to magic outcome, and thus there should be a

failing method execution.

Why does the Viper verifier successfully verify the program? The fold

operation succeeds, because there is sufficient permission to evaluate

a.g in the predicate body and a.g is greater than 0 due to the previous

assignment. So, here a fractional predicate is successfully folded, whose

(fractional) body is not self-framing. The unfold then leads to a magic

outcome, because from the corresponding inhale of the body we learn

that a.g is larger than 0, but because of the previous assignment, we

also know that a.g must be -1. As a result, the Viper verifier successfully

verifies the program.

The core reason why (fractional) predicate instances held in a Viper

state must guard self-framing bodies is because Viper frames all these

predicate instances around operations performed on the state (that is,

the predicate instances are left unchanged). Self-framedness guarantees

that such operations cannot change information held within predicate

instances. In the shown program, because the folded predicate instance

does not guard a self-framing body, the second assignment is able to

change information held within the folded predicate instance. A natural

solution would be for Viper to require that every fraction of specified

predicate bodies in predicate definitions is self-framing (instead of just

the fraction 1). However, this requirement may be too strong. For instance,

this requirement is not necessary if the fractions used for predicate

instances in a concrete Viper program are always greater or equal to

1. In particular, this requirement rules out certain predicates that are

potentially useful with the current Viper language. As a result, this

requirement would disallow these predicates even if they were used only

with fractions that are greater or equal to 1. For example, if a predicate

body uses Viper function applications whose preconditions require specific

amounts of permission, then fractional amounts of the body will not

be self-framing. There has been a longstanding discussion (prior to our

work) on eliminating function preconditions with specific permission

amounts for other reasons. The soundness bug discussed here provides

another strong motivation for doing so. In summary, a solution to the

problem will require answering broader design questions on predicates

(and potentially other features such as functions).

How we discovered the unsoundness

The reason we discovered the previously unknown unsoundness

with predicates is the following. We were looking into how the

Viper-to-Boogie implementation treats predicate because one of our

goals was to make sure that our certification approach could be

extended to other Viper features, and predicates are a core feature

outside of our subset. The Viper-to-Boogie implementation uses an

optimised translation for inhale and exhale operations of the predi-

cate body as part of the translation for fold and unfold operations.

3.9. Future Work 195

This optimisation omits well-definedness checks for expressions in

the corresponding assertions, which is analogous to the optimised

method call translation. We initially thought that this optimisation

for fold and unfold was justified by the fact that the implementation

emitted well-formedness checks for the predicate body, which would

be analogous to the justification for the optimised method call trans-

lation. However, while trying to prove this justification, we noticed

that the well-formedness check was not strong enough to justify the

optimisation for fractional predicates. Ultimately, we noticed that

there is even an unsoundness if the Viper-to-Boogie implementation

does not use an optimised encoding for fold and unfold, as our ex-

ample demonstrates (i. e. even without the optimisation, the generated

Boogie program for Figure 3.30 is correct).

3.9. Future Work

In this section, we discuss some avenues for future work.

3.9.1. Extend Supported Viper Subset

Viper supports commonly used features that are not in our supported

subset. The most important features not included in our subset are (1)

loops, (2) quantifiers, (3) (labelled) old expressions, which evaluate ex-

pressions in a previous Viper state, (4) more-complex resource assertions,

which include predicates, magic wands, and iterated separating con-

junctions, (5) heap-dependent functions, and (6) domains, which are

used to axiomatise constructs in Viper. Extending our Viper semantics

with these features and then applying (and if necessary extending) our

methodology in order to support these features is one possible future

direction.

Describing the semantics of loops and supporting them in the generation

of certificates is straightforward: their semantics can be desugared via

their invariant, in a pattern similar to method calls that we already

support. Extending support to Viper expressions with universal and

existential quantification should be straightforward, too. The semantics

of quantification can be defined similarly to the semantics of quantifi-

cation defined for Boogie in Chapter 2; the corresponding generation

of certificates should be straightforward. For (labelled) old expressions,

preliminary work taken by a student project supervised by us suggests

that an extension should be fairly straightforward using the existing

methodology. Defining the semantics of the more-complex resource as-

sertions is more involved. Once the semantics is defined, we are confident

that the general methodology developed in this thesis for generating

certificates will be applicable for these resource assertions. One challenge

for these assertions is to formalise a semantics that accurately captures

the intended behaviour. While the semantics of predicates, magic wands,

and iterated separating conjunctions is well-understood in traditional

separation logic settings, formalising their semantics in combination with

all of Viper’s features still has open challenges. We will discuss one chal-

lenge for predicates in more detail below. For heap-dependent functions

in an implicit dynamic frames setting, Summers and Drossopoulou [107]

[107]: Summers et al. (2013), A Formal
Semantics for Isorecursive and Equirecursive
State Abstractions

196 3. Formally Validating Translations into an Intermediate Verification Language

provide a semantics that could be extended to the Viper setting. Our

initial exploration into functions suggests that it may be useful to use a

generalised form of forward simulations; the main ideas of our method-

ology should still apply, see Subsection 3.9.2 for a discussion on working

with other simulations. Domains without any type parameters should

not pose any significant challenges, while formalising the semantics for

domains with type parameters may be more challenging.

Finally, we also do not formalise support for unstructured control flow

(Viper supports gotos). The semantics of unstructured control flow in

Viper has never been formalised. Doing so is not straightforward, because

if there are loops, then a Viper semantics needs to take invariants into

account to describe the semantics of loops accurately. Identifying loops

in unstructured programs is nontrivial (as we saw for Boogie’s cycle

elimination transformation in Chapter 2). It might make most sense

if the semantics gets the loop information as an input (e.g. indicating

where to loops are) to simplify the semantics. Finally, one would have

to tweak parts of our methodology, which currently expects structured

Viper programs.

Let us now take a closer look at one of the challenges that arises when

formalising Viper predicates (see Subsection 3.8.3 on page 191 for an

introduction to predicates). In order to model Viper predicates accurately,

a Viper semantics must treat predicates isorecursively (i. e. a predicate

instance is differentiated from its body), which reflects how the Viper

verifier treats predicates and as a result is fundamental for giving an accu-

rate meaning to certain Viper features such as permission introspection.

For instance, perm(x.f) should not take permissions into account that

are guarded within a held predicate instance, and perm(P(x)) should

evaluate to the total permission amount held for predicate instance P(x)

(which is an amount that is independent from the directly held permis-

sions to heap locations). As a result, a Viper state’s permission mask must

track the directly accessible permissions to heap locations separately

from the permission amount held for each predicate instance.

A question that arises with this change to the Viper state is whether and

how to extend the consistency of Viper states. Recall that the semantics

formalised in this chapter ensures that states remain consistent. In

particular, an inhale only results in a normal outcome if the resulting

state is consistent; if the inhale does not fail and the resulting state

would be inconsistent, then inhale goes to magic. It turns out that to

justify the existing Viper-to-Boogie translation for predicates, extending

the consistency of Viper states is one possible option (as we will argue

below). In our current semantics without predicates, a Viper state is

consistent if there is at most one permission to each heap location. An

extension that could justify the existing Viper-to-Boogie translation is

that the same is true after completely unfolding the body of each held

predicate instance (recursively until there are no predicate instances left).

For example, consider the following predicate definition:

predicate P(x: Ref) {

acc(x.f, 1/2)

}

Suppose a Viper state contains both a predicate instance P(x) and full

permission to x.f. Then, the state would not be consistent (according

3.9. Future Work 197

field f: Int

predicate P(x: Ref) {
acc(x.f, 1/2)

}

function getVal(x: Ref) : Int
requires P(x)

{
unfolding P(x) in x.f

}

method m(x: Ref)
requires P(x) && acc(x.f) && x.f == 0
ensures false

{
// assert getVal (x) == 0

x.f := x.f + 1
// assert getVal (x) == 1

}

Figure 3.31: Example showing why we consider an extended notion of consistency and why this extended

notion justifies the existing Viper-to-Boogie translation. The Boogie program, which is generated by the

existing Viper-to-Boogie translation for this Viper program, is correct. For the verifier to report success in

practice, the assert statements must be uncommented to trigger quantifiers in the Boogie encoding.

to the extended notion), since after completely unfolding P(x), there is

more than one permission to x.f. That means, after inhaling acc(P(x)

) && acc(x.f) using the definition of P(x) above, the magic outcome

would be reached with this extended consistency notion.

Summers and Drossopoulou [107] have defined such an extended notion [107]: Summers et al. (2013), A Formal
Semantics for Isorecursive and Equirecursive
State Abstractions

of consistency in order to formally show the relation of an isorecur-

sive predicate semantics with an equirecursive predicate semantics. In

an equirecursive semantics, a predicate instance and its body are not

differentiated. Instead, predicates are directly interpreted via their least

fixed points. There are multiple challenges that are not addressed by

Summers and Drossopoulou [107], which would need to be solved to

extend our work for Viper using such an extended notion of consistency.

First, the extended notion of consistency would be fundamentally part of

the (isorecursive) Viper semantics, instead of just being used for proving

a formal relation with an equirecursive semantics. Second, since Viper

has iterated separating conjunctions potentially ranging over an infinite

domain, a Viper state may hold infinitely many predicate instances.

As a result, formally defining the extended notion of consistency must

essentially compute infinite sums. Third, since Viper supports existen-

tial quantification of permission amounts via wildcards, there is not a

uniquely determined permission amount for each heap location even

after completely unfolding each predicate instance.

Let us now discuss why it even makes sense to consider an extended

notion of consistency as part of the Viper semantics in order to justify

the existing Viper-to-Boogie translation (instead of using the original

consistency definition). This is not obvious, because the existing Viper-

to-Boogie translation does not inspect the bodies of predicates explicitly,

198 3. Formally Validating Translations into an Intermediate Verification Language

except as part of fold and unfold statements.

The Viper program shown in Figure 3.31 justifies an extended notion

of consistency. This example contains the same predicate definition P

that we used before and additionally contains a heap-dependent function
getVal, which returns the value of x.f.

38 getVal specifies the predicate38: The body of heap-dependent func-

tions are always just expressions and

thus they have no side effects.

instance P(x) in its precondition in order to ensure that the evaluation of

x.f is well-defined. The unfolding expression instructs the verifier to

use the body of P(x) to justify the well-definedness of x.f.

The Boogie program, which is generated by the existing Viper-to-Boogie

translation for this Viper program, is correct (we will discuss why in

the next paragraph). That is, to justify the Viper-to-Boogie translation,

the Viper semantics must ensure that this Viper program, which has

false as a method postcondition, is correct. Using the extended notion of

consistency, the Viper program is indeed correct, because the state reached

after inhaling the precondition of m is always inconsistent, and thus every

execution goes to magic. The reason is that the permission amount

to x.f contained in the body of P(x) and the precondition’s second

conjunct together exceed 1. This behaviour is completely natural for an

equirecursive semantics, which does not distinguish between a predicate

instance and its body (in an equirecursive semantics, the assertion acc(x

.f) && P(x) cannot be satisfied). However, for an isorecursive semantics

such as the one we are considering for Viper, this behaviour is not obvious.

Next, we will make clear why we are considering this behaviour in the

first place: because the generated Boogie program is correct.

Finally, let us discuss why the Boogie program generated by the existing

Viper-to-Boogie translation for this Viper program is correct. The reason

is that the encoding used by the translation for this program essentially

makes explicit that the predicate instance P(x) before and after the field

assignment must be the same one. Moreover, the encoding reflects that

getVal depends only on those heap locations to which P(x) specifies

permissions. Thus, the program encodes that the value returned by

getVal must be the same before and after the heap assignment, because

the predicate instance before and after the field assignment is the same

one. As a result, there is a contradiction, because the value returned by

getVal (i. e. x.f) is different before and after the field assignment, and

thus the postcondition false holds in the encoding.
39

39: In practice, the Boogie verifier will

not be able to derive the contradiction,

because the necessary quantifiers in

the Boogie axioms are not triggered. If

one uncomments the assert statements

shown in Figure 3.31 (which both suc-

ceed in the Viper semantics), then the

Boogie verifier will derive the contradic-

tion for the resulting Boogie program.

Note that an assert statement that suc-

ceeds does not change the semantics of

a Viper program.

At a high level, the Boogie encoding frames Viper predicate instances

around statements, and this fact can be explicitly observed in the encoding

of Viper functions, without requiring any unfold or fold statements

in the corresponding Viper program. The extended consistency notion

justifies this by ensuring that if the heap is updated, then it is guaranteed

that no predicate instance is affected (if additionally the predicate bodies

guarded by predicate instances are self-framing, see Subsection 3.8.3 on

page 191).

Once the semantics of predicates is defined, one can apply our method-

ology to extend the generation of certificates to support predicates. One

important aspect for certification is to include the extended state consis-

tency into the state relations tracked by simulation proofs in the certificate.

To achieve this, one will have to prove that the Viper semantics (extended

to predicates) preserves the extended state consistency. Moreover, one

3.9. Future Work 199

will have to formally show that the extended state consistency can indeed

be used to justify the existing Viper-to-Boogie translation.

3.9.2. Extension to Other Simulations

Our methodology in this chapter uses forward simulations as the under-

lying simulation. An advantage of forward simulations is that they are

simple to reason about. However, forward simulations cannot be used to

justify every possible translation. In some cases, different simulations are

required. One direction for future work is to apply the main concepts

from our methodology to other kinds of simulations. The main concepts

from our methodology are (1) splitting a simulation syntactically and

semantically into smaller simulations, (2) handling diverse translations

by sufficiently parameterising simulations, and (3) propagating proper-

ties implied by non-local checks in the state relation in systematic ways.

None of these concepts are specifically tied to forward simulations. We

chose forward simulations for our use case, because it is a simple kind

of simulation that is sufficient to reason about a variety of front-end

translations. In particular, we demonstrated the applicability of forward

simulations on the existing Viper-to-Boogie implementation for our sub-

set. Moreover, as part of an internship project supervised by us, Bonneau

[63] showed that the existing Dafny-to-Boogie translation could also be [63]: Bonneau (2021), A formal foundation
for the Dafny verifier

reasoned about using forward simulations.

In some cases, when forward simulations are not expressive enough for

translations, one can split the reasoning into two parts, one of which can

be handled by forward simulations, and the other must be handled with a

different simulation. One example in our work is the encoding of scoped

Viper variables into Boogie. The existing Viper-to-Boogie translation just

declares a unique local Boogie variable (declared at the start of the Boogie

method) for each scoped Viper variable. The encoding of the scoped

variable itself does not result in any Boogie command in the procedure

body. This encoding cannot be justified using only a forward simulation,

because in the Viper semantics the value for the scoped variable is chosen

nondeterministically at the point when the corresponding declaration is

executed within the Viper method body, while in the Boogie procedure

the value for the corresponding local variable 𝑙 is chosen at the beginning
of the procedure. For every Viper execution, a forward simulation tracks

a single value for 𝑙 in the Boogie state until the Viper scoped declaration

is executed. Since it is impossible to choose the correct value up front that

is going to be chosen by the scoped declaration, the forward simulation

cannot justify the translation. As discussed in Section 3.6, our workaround

is to introduce a havoc statement for 𝑙 in the Boogie procedure at the point

when the scoped Viper variable is introduced, which allows choosing

the value for 𝑙 at the same point as in Viper, and thus is justifiable

using a forward simulation. One would need to separately show that the

correctness of the original Boogie encoding implies the correctness of

the Boogie encoding with the havoc statements using a different kind

of simulation. Forward simulations are also not expressive enough to

handle Boogie’s assignment elimination presented in Chapter 2 for a

similar reason. In the validation of assignment elimination, we handled

the entire transformation using a different kind of simulation (tracking

a set of Boogie states instead of a single Boogie state for each Viper

200 3. Formally Validating Translations into an Intermediate Verification Language

state). This different simulation can be seen as a generalised forward

simulation.

3.9.3. Front-End Translations that Encode Program Logics

Some front-end translations encode program logics into the IVL. For

instance, various front-end translations into Viper encode a flavour of

concurrent separation logic into Viper (see Section 3.7 for examples). In

such translations, a parallel composition of two statements in the source

program is typically encoded into three IVL procedures: one procedure

per parallel branch, each of which is verified using a separate specification

provided by the user, and one for the enclosing code that contains the

parallel branch, which composes the two specifications to encode the

behaviour of the parallel composition overall. This translation encodes

concurrent separation logic’s rule for parallel compositions.

In work not presented in this dissertation, we show that a natural way of

justifying such translations is to use an axiomatic semantics of the input

language (i. e. the front-end program logic) and an axiomatic semantics of

the IVL [45]. In this setting, soundness is shown by proving that a valid[45]: Dardinier et al. (2025), Formal Foun-
dations for Translational Separation Logic
Verifiers

derivation for the IVL program in its axiomatic semantics implies a valid

derivation for the input program in its axiomatic semantics. In contrast,

the work in this chapter works directly at the level of an operational

semantics for both the input language and the IVL, which is natural

for front-end translations that encode an operational semantics into the

IVL instead of encoding a program logic (such as the Viper-to-Boogie

translation). It depends on the translation whether working with an

axiomatic semantics or an operational semantics is more convenient.

In our work on soundness proofs that use an axiomatic semantics for the

input language and IVL [45], we consider once-and-for-all proofs (instead

of per-run validation) and we do not consider actual implementations

used in practice. One direction for future work would be to develop

a per-run validation approach for automatically generating certificates

for front-end translations implemented in practice that encode program

logics. To do so, one could port ideas developed in this chapter to the

setting where soundness proofs use an axiomatic semantics for the input

language and the IVL.

3.9.4. Leveraging Syntactic Checks on the Boogie Code

As we discussed in Subsection 3.5.2 on page 157, we use the auxiliary

variable map in our state relation instantiation to prove that certain Boogie

variables are not modified during the simulation of some Viper effect.

For example, the simulation of remcheck 𝐴 is justified via the judgement

rcSimΓ𝑏 (𝑅, 𝑅′, 𝐴, 𝛾, 𝛾′). To prove that Boogie executions justifying this

judgement do not modify certain Boogie variables, we reflect these

variables explicitly in the auxiliary variable maps of 𝑅 and 𝑅′
. It would

be more convenient if we could instead just syntactically check that the

Boogie code simulating the Viper effect does not modify the variables

in question. This would simplify working with simulation rules such

as the method call rule (see Figure 3.21 on page 151), where we must

show that certain variables are not modified during the simulation

3.9. Future Work 201

of the corresponding exhale and inhale operations. However, such a

syntactic check is not straightforward here, because one would need to

overapproximate the set of commands executed by Boogie executions

starting from program point 𝛾 and ending in 𝛾′
. One direction for future

work would be to adjust the approach to make such syntactic checks

straightforward with the goal of simplifying certificates.

One way to potentially achieve this would be to connect the Viper AST to

an intermediate Boogie AST representation, which has the same structure

as the Viper AST. In a separate step, one would connect the intermediate

Boogie AST representation with the actual Boogie AST used by the Boogie

verifier.
40

For instance, a Viper sequential composition 𝑠1; 𝑠2 would be 40: The Viper-to-Boogie implementation

internally uses such an intermediate Boo-

gie AST representation that has the same

structure as the Viper AST representa-

tion.

encoded in the intermediate AST by a Boogie sequential composition

𝑡1; 𝑡2 where 𝑡𝑖 encodes 𝑠𝑖 .
41

This way one could more easily identify,

41: Such a Boogie sequential composi-

tion does not exist in the Boogie AST

representation that we target.

which Boogie statement captures which Viper effect (e.g. 𝑡𝑖 captures the

execution of 𝑠𝑖), and could thus use syntactic checks.

Advantage of current approach

A potential downside of using such an intermediate Boogie AST

representation is that one may lose generality. In particular, our current

approach, which directly targets the Boogie AST as represented by the

Boogie verifier, is essentially agnostic towards what representation

is used for the Boogie program. One could, for instance, replace the

Boogie AST semantics by the Boogie control-flow graph semantics

defined in Chapter 2 in our simulation relation, and everything would

essentially still work the same way. For instance, in an internship

project supervised by us, Bonneau [63] showed that one can use our

current approach to directly connect a Dafny program represented

as an AST with Boogie’s control-flow graph representation. This is

likely harder to achieve using an approach that relies on the structural

similarity of the source and target representations.

3.9.5. End-to-End Certificates

Given a Viper program 𝑃𝑣 , our certificate-producing Viper-to-Boogie

implementation generates a certificate connecting the Viper program

𝑃𝑣 with the corresponding Boogie program 𝑃𝑏 . In order to apply our

certificate-producing Boogie verifier discussed in Chapter 2 to 𝑃𝑏 in

order to produce a certificate connecting 𝑃𝑏 with the corresponding

verification condition, there are still some extensions required. Once

these extensions have been implemented, one could connect the two

certificates to obtain an end-to-end certificate that connects 𝑃𝑣 directly

with Boogie’s verification condition. The required extensions are the

following. First, certificate-producing support needs to be added for the

features discussed in Subsection 3.3.5 on page 131. Second, the certificate

optimisations and the incompletenesses discussed in Subsection 2.12.1

on page 91 in Chapter 2, which are relevant for Viper-generated Boogie

programs, must be implemented. Finally, the dead variable elimination of

the Boogie verifier needs to also be certified in case the Viper-generated

Boogie program leads to Boogie variables that are eliminated.

This concludes this chapter on the formal validation of the existing Viper-

202 3. Formally Validating Translations into an Intermediate Verification Language

to-Boogie implementation. Our work makes the existing implementation

certificate-producing, thus significantly increasing the implementation’s

trustworthiness. As part of doing this work, we were able to positively

impact the Viper ecosystem by fixing bugs and developing a deeper

understanding of the Viper language.

Conclusion 4.

We have presented formal translation validation approaches for trans-

lational program verifiers. We have applied these approaches to the

existing Boogie and Viper verifier implementations. This application,

enabled via an instrumentation of the existing implementations, led to

the automatic production of a formal certificate on every verifier run such

that Isabelle can check these certificates automatically. As a result, our

work demonstrates that it is feasible to provide strong formal guarantees

for verification results of existing and practical translational program

verifiers written in mainstream programming languages.

Our work has had impact beyond demonstrating the feasibility of formal

guarantees for existing and practical implementations. For instance, we

have discovered soundness bugs and made general improvements as

a result of our work in Viper’s ecosystem (Section 3.8 discusses some

of these). Moreover, exploratory work on formally reasoning about the

Dafny-to-Boogie translation via our Boogie semantics [63] discovered [63]: Bonneau (2021), A formal foundation
for the Dafny verifier

that if polymorphic maps were extensional, then the Dafny-to-Boogie

translation would be unsound [131].
1

At the time, Boogie did not emit [131]: Parthasarathy (2022), Soundness of
Dafny relies on Boogie maps not being exten-
sional (Issue 2463)
1: The Dafny GitHub issue was posted

by the author of this dissertation, but

Benjamin Bonneau found the potential

unsoundness.

extensionality axioms for polymorphic maps, and thus there was no

soundness issue in practice. However, such a change could easily be

integrated into Boogie. Many of these discoveries are hard to identify

without deeply thinking about the implemented translations and the

formal semantics of the languages involved, which is something we were

required to do for the work presented by this dissertation.

More broadly, our work has enabled answering or identifying questions.

For instance, when Boogie developers were working on extending their

monomorphisation approach to polymorphic maps and type quantifica-

tion in 2022 (which was eventually merged [99]), we were able to support [99]: Qadeer (2022), Monomorphization of
polymorphic maps and binders

them by formally explaining what a feasible formal semantics for these

features is, using our work as evidence. For type quantification, our work

provides a formal semantics and demonstrates that Boogie’s generated

verification condition respects this semantics. Our work does not provide

a formal semantics for polymorphic maps in general, but our work shows

how to formally capture instances of polymorphic maps used in practice

(e.g. to represent heaps), which helped gain a deeper understanding for

their intended meaning. Moreover, our goal of putting Viper on a more

formal footing has helped with supporting design decisions and has

helped identify questions that need to be answered (Subsection 3.8.3

on page 191 discusses one example). The impact on Viper via formal

foundations has been a collaborative effort, which has been achieved

through different projects. This dissertation contributed to this impact

significantly. Moreover, the work led by Thibault Dardinier, which is

not presented in this dissertation but to which the author of this dis-

sertation also contributed, also had a significant impact. The combined

insights gained from these collaborations were important to gain a clearer

understanding of large parts of the Viper ecosystem.

As future work, there are many directions one could take. We have

outlined some concrete future directions in Section 2.12 on page 91

204 4. Conclusion

and Section 3.9 on page 195. We end this dissertation by discussing a

broader future direction. In particular, the automatic certificate produc-

tion infrastructures, which we have added to existing implementations,

are research prototypes. We have maintained these research prototypes

as part of forks of the main codebase. There are still questions to be

answered, in order to turn such research prototypes into mature infras-

tructures that are part of the main codebase, and which are actively

maintained by verifier developers. Next, we discuss such questions as

part of three dimensions: (1) the scalability to large input programs, (2)

the formal semantics of the languages involved in translations, and (3)

the maintainability of the certificate production infrastructure.

Scalability

One question is to what extent our high-level approach scales to large

programs. We have demonstrated our approach on small to medium-

sized programs, which is a substantial improvement over not having

any formal guarantees at all. However, to increase the likelihood that

such an approach is accepted by verifier developers, one must be able to

handle most programs in reasonable time, which includes large programs.

That means, Isabelle needs to be able to check the generated certificates

in reasonable time, which requires certificate optimisations. We have

discussed promising optimisations in Subsection 2.12.1 on page 91 (for

instance, we discuss an optimisation for a quadratic overhead for Boogie

variables, which leads to slow certificate checking times for Boogie

programs with very many variables). More work needs to be done and

optimisations must be implemented to demonstrate that our approach

scales to all programs that show up in practice.

Formal semantics

A requirement of our approach is that one must have a formal semantics

for the languages involved, otherwise it is not possible to provide formal

guarantees. However, for some languages, the semantics of certain fea-

tures is essentially an open research problem. In our case, we considered

languages (Boogie and Viper) that have substantially fewer features than

mainstream programming languages, and even for those, formalising

the semantics is challenging for certain features of the language. Also, we

considered only subsets of these languages, which capture substantial

parts of the languages, but are subsets nonetheless. As a result, two

natural questions arise. First, how does the approach scale to larger and

more complex language subsets? To deal with this question, we have

taken care to design a modular approach via our systematic decomposi-

tion into smaller problems. Our decomposition allows one to deal with

different aspects of the language independently. Nevertheless, one must

still demonstrate that our approach indeed scales to larger and more

complex language subsets. Second, if one only has a formal semantics for

a subset of a language, how can one substantiate the benefit of the work?

For the second question, we have evidence of the positive impact the work

can have on a language and verifier ecosystem despite supporting only a

subset of the language (some examples were discussed in Section 3.8).

205

Maintainability

In order for the certificate production to be part of the main code

base, one must answer the question of how to make the production of

certificates maintainable over time. Certificate production requires the

instrumentation of the implementation to provide hints, and requires

that the proof automation works as expected. For instance, if a large

part of the translation changes substantially, then there is potentially

nontrivial work involved in adjusting both the instrumentation and the

proof automation. Our approach tries to minimise this work as much as

possible. For instance, using our approach, if only one feature is affected

then in many cases one need not adjust the certification of other features.

However, there are changes that could globally affect all features. It

would be beneficial if the certificate production were set up such that

even for such substantial changes it is clear how the different components

need to be adjusted at a high level. It might also be in general useful to

provide debugging tools for the case when a certificate is not successfully

checked by Isabelle. For new verifier features or substantial changes to

the translation, one may want to introduce a temporary time frame where

certificates are not supported for particular features or where a certificate

with additional assumptions is produced. This would allow for verifier

development to move faster, while allowing the certificate production

code to remain part of the main code base.

While these questions still need to be answered, this dissertation demon-

strates a significant improvement in terms of formally establishing the

soundness of translational program verifier implementations used in prac-
tice. We hope that in the future the research community will further

expand on this line of work such that it becomes the norm that transla-

tional program verifier implementations used in practice enjoy formal

soundness guarantees.

Appendix A.

A.1. Detailed Results of the Evaluation in

Chapter 3

The detailed results of the evaluation presented in Section 3.6 on page 177

are shown separately for each of the files in Table 1.1 (Gobra), Table 1.2

(MPP), Table 1.3 (VerCors), and Table 1.4 (Viper).

208 A. Appendix

Table 1.1: Detailed results of our evaluation for the files from the test suite of Gobra.

File Methods Viper Boogie Isabelle Proof Check

no. Total [LoC] Total [LoC] Total [LoC] Total [s]

concurrency 2 24 164 1153 25.3

defer-simple-01 6 142 639 3344 49.6

defer-simple-02 9 211 853 4717 60.6

perm-fail1 15 165 661 6392 66.5

perm-simple1 9 131 622 4221 50.7

fail1 3 44 283 1574 31.6

fail3 2 19 116 1044 23.6

simple1 2 30 237 1210 28.4

simple2 1 10 90 672 21.4

simple3 1 17 186 801 24.6

global-const-8 6 49 206 2510 33.8

pointer-identity 1 30 158 731 23.0

pointer-identity 1 30 158 731 23.1

000008 1 10 85 672 21.4

000009 1 16 98 679 21.3

000039 3 49 178 1410 26.8

000155 2 39 152 1075 24.3

Table 1.2: Detailed results of our evaluation for the files from the test suite of MPP.

File Methods Viper Boogie Isabelle Proof Check

no. Total [LoC] Total [LoC] Total [LoC] Total [s]

banerjee 8 414 2014 9545 242.4

darvas 2 91 582 2800 38.4

kusters 3 112 583 3146 46.2

Table 1.3: Detailed results of our evaluation for the files from the test suite of VerCors.

File Methods Viper Boogie Isabelle Proof Check

no. Total [LoC] Total [LoC] Total [LoC] Total [s]

BasicAssert-e1 6 41 197 2589 35.0

BasicAssert 6 41 193 2589 35.0

DafnyIncr 8 60 265 3419 41.6

DafnyIncrE1 8 57 220 3340 40.2

permissions 5 39 208 2270 33.1

inv-test-fail1 5 90 510 2589 55.5

inv-test-fail2 5 92 514 2596 56.5

inv-test 5 90 510 2589 55.1

SwapIntegerFail 8 79 429 3645 49.8

SwapIntegerPass 8 81 469 3688 53.0

SwapLong 6 57 277 2725 36.7

SwapLongTwice 8 81 469 3688 52.1

SwapLongWrong 8 79 429 3645 48.9

frame-error-1 5 35 173 2191 32.8

refute3 6 49 246 2662 34.5

refute4 6 54 258 2676 35.9

refute5 6 50 253 2662 35.9

demo1 7 60 347 3185 44.6

A.1. Detailed Results of the Evaluation in Chapter 3 209

Table 1.4: Detailed results of our evaluation for the files from the test suite of Viper.

File Methods Viper Boogie Isabelle Proof Check

no. Total [LoC] Total [LoC] Total [LoC] Total [s]

0004 1 6 100 729 21.7

0004-CPG1 1 6 95 704 21.6

0005 1 4 78 665 21.1

0008 2 12 241 1396 26.8

0011 5 63 902 3284 55.7

0015 1 6 92 709 21.4

0052 1 7 100 719 21.5

0063 6 34 180 2595 35.2

0072 1 8 112 770 22.4

0073 1 10 132 737 22.2

0088-1 1 9 115 751 21.9

0094 1 6 91 679 21.2

0152 2 14 139 1137 24.5

0157 8 47 354 3508 45.1

0159 2 13 120 1083 23.8

0170 1 8 84 665 21.1

0177-1 1 10 102 665 21.4

0222 2 13 118 1054 23.9

0227 1 5 85 683 21.4

0324 1 7 104 704 21.2

0345 3 21 165 1463 24.4

0384 1 11 127 709 22.0

assert 1 7 92 693 21.5

negative-amounts 3 21 155 1517 27.4

old 6 38 318 2805 37.9

swap 2 16 177 1239 25.6

test 1 6 81 663 20.9

testHistoryProcesses 13 205 1711 7035 126.3

testHistoryProcessesPVL 13 204 1711 7035 116.3

testHistoryProcessesPVL-CPG1 4 56 490 2304 46.1

testHistoryThreadsProcessesPVL 4 56 490 2304 45.7

test-example1 4 57 374 2152 37.0

test-example3 5 74 430 2634 39.3

test-example4 5 71 451 2645 42.7

Bibliography

Here are the references in citation order.

[1] K. Rustan M. Leino. ‘This is Boogie 2’. Available from http://research.microsoft.com/en-

us/um/people/leino/papers/krml178.pdf. 2008 (cited on pages 2, 3, 9, 24, 91, 97).

[2] Xavier Denis, Jacques-Henri Jourdan, and Claude Marché. ‘Creusot: A Foundry for the Deductive

Verification of Rust Programs’. In: International Conference on Formal Engineering Methods (ICFEM). Ed.

by Adrián Riesco and Min Zhang. Vol. 13478. 2022, pp. 90–105. doi: 10.1007/978-3-031-17244-1_6

(cited on pages 2, 3, 97, 98).

[3] K. Rustan M. Leino. ‘Dafny: An Automatic Program Verifier for Functional Correctness’. In: Logic
for Programming, Artificial Intelligence, and Reasoning (LPAR). Ed. by Edmund M. Clarke and Andrei

Voronkov. 2010. doi: 10.1007/978-3-642-17511-4_20 (cited on pages 2, 3, 14, 97, 177).

[4] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris Yakobowski. ‘Frama-

C: A software analysis perspective’. In: Formal Aspects of Computing 27.3 (2015), pp. 573–609. doi:

10.1007/s00165-014-0326-7 (cited on pages 2, 4, 97).

[5] Felix A. Wolf, Linard Arquint, Martin Clochard, Wytse Oortwĳn, João Carlos Pereira, and Peter Müller.

‘Gobra: Modular Specification and Verification of Go Programs’. In: Computer Aided Verification (CAV).
Ed. by Alexandra Silva and K. Rustan M. Leino. 2021. doi: 10.1007/978-3-030-81685-8_17 (cited

on pages 2, 4, 99, 178).

[6] Stefan Blom, Saeed Darabi, Marieke Huisman, and Wytse Oortwĳn. ‘The VerCors Tool Set: Verification

of Parallel and Concurrent Software’. In: Integrated Formal Methods (IFM). Ed. by Nadia Polikarpova

and Steve Schneider. 2017. doi: 10.1007/978-3-319-66845-1_7 (cited on pages 2, 4, 99, 178).

[7] P. Müller, M. Schwerhoff, and A. J. Summers. ‘Viper: A Verification Infrastructure for Permission-

Based Reasoning’. In: Verification, Model Checking, and Abstract Interpretation (VMCAI). Ed. by Barbara

Jobstmann and K. Rustan M. Leino. 2016. doi: 10.1007/978-3-662-49122-5_2 (cited on pages 2, 4, 9,

14, 97).

[8] Sascha Böhme and Tjark Weber. ‘Fast LCF-Style Proof Reconstruction for Z3’. In: Interactive Theorem
Proving (ITP). Ed. by Matt Kaufmann and Lawrence C. Paulson. 2010. doi: 10.1007/978-3-642-

14052-5_14 (cited on pages 2, 4, 13, 89, 97).

[9] Burak Ekici, Alain Mebsout, Cesare Tinelli, Chantal Keller, Guy Katz, Andrew Reynolds, and Clark W.

Barrett. ‘SMTCoq: A Plug-In for Integrating SMT Solvers into Coq’. In: Computer Aided Verification
(CAV). Ed. by Rupak Majumdar and Viktor Kuncak. 2017. doi: 10.1007/978-3-319-63390-9_7 (cited

on pages 2, 4, 13, 89, 97).

[10] Mathias Fleury and Hans-Jörg Schurr. ‘Reconstructing veriT Proofs in Isabelle/HOL’. In: Workshop
on Proof eXchange for Theorem Proving (PxTP). Ed. by Giselle Reis and Haniel Barbosa. 2019. doi:

10.4204/EPTCS.301.6 (cited on pages 2, 4, 13, 89, 97).

[11] The Coq Development Team. The Coq Reference Manual – Release 8.19.0. https://coq.inria.fr/doc/

V8.19.0/refman. 2024 (cited on page 2).

[12] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof Assistant for Higher-
Order Logic. Vol. 2283. Lecture Notes in Computer Science. Springer, 2002 (cited on pages 2, 13,

97).

[13] Leonardo Mendonça de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von

Raumer. ‘The Lean Theorem Prover (System Description)’. In: Conference on Automated Deduction
(CADE). Ed. by Amy P. Felty and Aart Middeldorp. Vol. 9195. Lecture Notes in Computer Science.

Springer, 2015, pp. 378–388. doi: 10.1007/978-3-319-21401-6_26 (cited on page 2).

http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf
https://doi.org/10.1007/978-3-031-17244-1_6
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/978-3-030-81685-8_17
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-642-14052-5_14
https://doi.org/10.1007/978-3-642-14052-5_14
https://doi.org/10.1007/978-3-319-63390-9_7
https://doi.org/10.4204/EPTCS.301.6
https://coq.inria.fr/doc/V8.19.0/refman
https://coq.inria.fr/doc/V8.19.0/refman
https://doi.org/10.1007/978-3-319-21401-6_26

[14] Chris Lattner and Vikram S. Adve. ‘LLVM: A Compilation Framework for Lifelong Program Analysis &

Transformation’. In: Code Generation and Optimization (CGO). IEEE Computer Society, 2004, pp. 75–88.

doi: 10.1109/CGO.2004.1281665 (cited on page 3).

[15] Akash Lal and Shaz Qadeer. ‘Powering the static driver verifier using corral’. In: Foundations of Software
Engineering (FSE). Ed. by Shing-Chi Cheung, Alessandro Orso, and Margaret-Anne D. Storey. ACM,

2014, pp. 202–212. doi: 10.1145/2635868.2635894 (cited on pages 3, 97).

[16] Montgomery Carter, Shaobo He, Jonathan Whitaker, Zvonimir Rakamaric, and Michael Emmi.

‘SMACK software verification toolchain’. In: International Conference on Software Engineering (ICSE).
Ed. by Laura K. Dillon, Willem Visser, and Laurie A. Williams. ACM, 2016, pp. 589–592. doi:

10.1145/2889160.2889163 (cited on pages 3, 14, 97).

[17] J.-C. Filliâtre and A. Paskevich. ‘Why3 — Where Programs Meet Provers’. In: European Symposium on
Programming (ESOP). Ed. by Matthias Felleisen and Philippa Gardner. 2013. doi: 10.1007/978-3-

642-37036-6_8 (cited on pages 4, 89, 97).

[18] Marco Eilers and Peter Müller. ‘Nagini: A Static Verifier for Python’. In: Computer Aided Verification
(CAV). Ed. by Hana Chockler and Georg Weissenbacher. 2018. doi: 10.1007/978-3-319-96145-3_33

(cited on pages 4, 99).

[19] Vytautas Astrauskas, Peter Müller, Federico Poli, and Alexander J. Summers. ‘Leveraging Rust Types

for Modular Specification and Verification’. In: vol. 3. OOPSLA. Association for Computing Machinery,

2019. doi: 10.1145/3360573 (cited on pages 4, 97, 99).

[20] John C. Reynolds. ‘Separation logic: A logic for shared mutable data structures’. In: Logic in Computer
Science (LICS). 2002, pp. 55–74. doi: 10.1109/lics.2002.1029817 (cited on pages 4, 99).

[21] Cormac Flanagan and James B. Saxe. ‘Avoiding exponential explosion: generating compact verification

conditions’. In: Principles of Programming Languages (POPL). Ed. by Chris Hankin and Dave Schmidt.

2001. doi: 10.1145/360204.360220 (cited on pages 4, 50).

[22] K. Rustan M. Leino. ‘Efficient weakest preconditions’. In: Information Processing Letters 93.6 (2005),

pp. 281–288. doi: https://doi.org/10.1016/j.ipl.2004.10.015 (cited on pages 4, 50, 90).

[23] Michael Barnett and K. Rustan M. Leino. ‘Weakest-precondition of unstructured programs’. In:

Workshop on Program Analysis For Software Tools and Engineering (PASTE). Ed. by Michael D. Ernst and

Thomas P. Jensen. 2005. doi: 10.1145/1108792.1108813 (cited on pages 4, 13, 23, 50, 90).

[24] Jean Fortin. ‘BSP-Why, a tool for deductive verification of BSP programs: machine-checked semantics

and application to distributed state-space algorithms’. PhD thesis. University of Paris-Est, France,

2013 (cited on page 5).

[25] Paolo Herms. ‘Certification of a Tool Chain for Deductive Program Verification’. PhD thesis. University

of Paris-Sud, Orsay, France, 2013 (cited on pages 5, 182).

[26] Muhammad Taimoor Khan. ‘Formal Specification and Verification of Computer Algebra Software’.

PhD thesis. Research Institute for Symbolic Computation (RISC), Johannes Kepler University Linz,

2014 (cited on page 5).

[27] Hermann Lehner and Peter Müller. ‘Formal Translation of Bytecode into BoogiePL’. In: Electronic Notes
in Theoretical Computer Science 190.1 (2007). Workshop on Bytecode Semantics, Verification, Analysis and

Transformation (Bytecode 2007), pp. 35–50. doi: https://doi.org/10.1016/j.entcs.2007.02.059

(cited on pages 5, 182).

[28] Frédéric Vogels, Bart Jacobs, and Frank Piessens. ‘A Machine Checked Soundness Proof for an

Intermediate Verification Language’. In: Theory and Practice of Computer Science, Conference on Current
Trends in Theory and Practice of Computer Science (SOFSEM). Ed. by Mogens Nielsen, Antonín Kucera,

Peter Bro Miltersen, Catuscia Palamidessi, Petr Tuma, and Frank D. Valencia. Vol. 5404. Lecture Notes

in Computer Science. Springer, 2009, pp. 570–581. doi: 10.1007/978-3-540-95891-8_51 (cited on

pages 5, 182).

https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/2635868.2635894
https://doi.org/10.1145/2889160.2889163
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-319-96145-3_33
https://doi.org/10.1145/3360573
https://doi.org/10.1109/lics.2002.1029817
https://doi.org/10.1145/360204.360220
https://doi.org/https://doi.org/10.1016/j.ipl.2004.10.015
https://doi.org/10.1145/1108792.1108813
https://doi.org/https://doi.org/10.1016/j.entcs.2007.02.059
https://doi.org/10.1007/978-3-540-95891-8_51

[29] Michael Backes, Cătălin HriŢcu, and Thorsten Tarrach. ‘Automatically Verifying Typing Constraints

for a Data Processing Language’. In: Certified Programs and Proofs (CPP). Ed. by Jean-Pierre Jouannaud

and Zhong Shao. 2011. doi: https://doi.org/10.1007/978-3-642-25379-9_22 (cited on pages 5,

182).

[30] Cyrill Martin Gössi. ‘A Formal Semantics for Viper’. Master’s Thesis. ETH Zurich, 2016 (cited on

pages 5, 182, 187).

[31] Frédéric Vogels, Bart Jacobs, and Frank Piessens. ‘A machine-checked soundness proof for an efficient

verification condition generator’. In: SAC. 2010 (cited on pages 5, 90, 91).

[32] Peter V. Homeier and David F. Martin. ‘A Mechanically Verified Verification Condition Generator’. In:

The Computer Journal 38.2 (1995), pp. 131–141 (cited on pages 5, 90).

[33] Jan Smans, Bart Jacobs, and Frank Piessens. ‘Implicit Dynamic Frames’. In: Transactions on Programming
Languages and Systems (TOPLAS) 34.1 (May 2012). doi: 10.1145/2160910.2160911 (cited on pages 5,

98, 103, 129, 188, 192).

[34] Lionel Blatter, Nikolai Kosmatov, Virgile Prevosto, and Pascale Le Gall. ‘Certified Verification

of Relational Properties’. In: Integrated Formal Methods (IFM). Ed. by Maurice H. ter Beek and

Rosemary Monahan. Vol. 13274. Lecture Notes in Computer Science. Springer, 2022, pp. 86–105. doi:

10.1007/978-3-031-07727-2_6 (cited on pages 5, 90).

[35] Quentin Garchery. ‘A Framework for Proof-carrying Logical Transformations’. In: Workshop on
Proof eXchange for Theorem Proving (PxTP). Ed. by Chantal Keller and Mathias Fleury. 2021. doi:

10.4204/EPTCS.336.2 (cited on pages 5, 89, 97, 185).

[36] Joshua M. Cohen and Philip Johnson-Freyd. ‘A Formalization of Core Why3 in Coq’. In: Proc. ACM
Program. Lang. 8.POPL (2024). doi: 10.1145/3632902 (cited on pages 5, 90, 185).

[37] Jean-Baptiste Tristan and Xavier Leroy. ‘Formal verification of translation validators: a case study

on instruction scheduling optimizations’. In: Principles of Programming Languages (POPL). Ed. by

George C. Necula and Philip Wadler. 2008. doi: 10.1145/1328438.1328444 (cited on pages 6, 14, 184).

[38] Jean-Baptiste Tristan and Xavier Leroy. ‘Verified validation of lazy code motion’. In: Programming
Language Design and Implementation (PLDI). Ed. by Michael Hind and Amer Diwan. 2009. doi:

10.1145/1542476.1542512 (cited on pages 6, 184).

[39] Christine Rizkallah, Japheth Lim, Yutaka Nagashima, Thomas Sewell, Zilin Chen, Liam O’Connor,

Toby Murray, Gabriele Keller, and Gerwin Klein. ‘A Framework for the Automatic Formal Verification

of Refinement from Cogent to C’. In: ITP. 2016 (cited on pages 6, 91).

[40] Jeehoon Kang, Yoonseung Kim, Youngju Song, Juneyoung Lee, Sanghoon Park, Mark Dongyeon Shin,

Yonghyun Kim, Sungkeun Cho, Joonwon Choi, Chung-Kil Hur, and Kwangkeun Yi. ‘Crellvm: verified

credible compilation for LLVM’. In: Programming Language Design and Implementation (PLDI). Ed. by

Jeffrey S. Foster and Dan Grossman. ACM, 2018, pp. 631–645. doi: 10.1145/3192366.3192377 (cited

on pages 6, 184).

[41] Léo Gourdin, Benjamin Bonneau, Sylvain Boulmé, David Monniaux, and Alexandre Bérard. ‘Formally

Verifying Optimizations with Block Simulations’. In: Proc. ACM Program. Lang. 7.OOPSLA2 (2023).

doi: 10.1145/3622799 (cited on pages 6, 184).

[42] Andreas Lööw, Daniele Nantes-Sobrinho, Sacha-Élie Ayoun, Caroline Cronjäger, Petar Maksimovic,

and Philippa Gardner. ‘Compositional Symbolic Execution for Correctness and Incorrectness Reason-

ing (Extended Version)’. In: CoRR abs/2407.10838 (2024). doi: 10.48550/arXiv.2407.10838 (cited on

page 6).

[43] Frédéric Vogels, Bart Jacobs, and Frank Piessens. ‘Featherweight VeriFast’. In: Log. Methods Comput.
Sci. 11.3 (2015). doi: 10.2168/LMCS-11(3:19)2015 (cited on page 6).

[44] Conrad Zimmerman, Jenna DiVincenzo, and Jonathan Aldrich. ‘Sound Gradual Verification with

Symbolic Execution’. In: Proc. ACM Program. Lang. 8.POPL (2024), pp. 2547–2576. doi: 10.1145/

3632927 (cited on pages 6, 188).

https://doi.org/https://doi.org/10.1007/978-3-642-25379-9_22
https://doi.org/10.1145/2160910.2160911
https://doi.org/10.1007/978-3-031-07727-2_6
https://doi.org/10.4204/EPTCS.336.2
https://doi.org/10.1145/3632902
https://doi.org/10.1145/1328438.1328444
https://doi.org/10.1145/1542476.1542512
https://doi.org/10.1145/3192366.3192377
https://doi.org/10.1145/3622799
https://doi.org/10.48550/arXiv.2407.10838
https://doi.org/10.2168/LMCS-11(3:19)2015
https://doi.org/10.1145/3632927
https://doi.org/10.1145/3632927

[45] Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J. Summers, and Peter Müller.

‘Formal Foundations for Translational Separation Logic Verifiers’. In: Proc. ACM Program. Lang. 9.POPL

(2025). doi: 10.1145/3704856 (cited on pages 6, 12, 123, 182, 185, 186, 188, 200).

[46] Stefan Wils and Bart Jacobs. ‘Certifying C program correctness with respect to CH2O with VeriFast’.

In: CoRR abs/2308.15567 (2023). doi: 10.48550/ARXIV.2308.15567 (cited on pages 6, 90, 185).

[47] Norman D. Megill and David A. Wheeler. Metamath: A Computer Language for Mathematical Proofs. 2019.

url: http://us.metamath.org/downloads/metamath.pdf (cited on page 6).

[48] Zhengyao Lin, Xiaohong Chen, Minh-Thai Trinh, John Wang, and Grigore Rosu. ‘Generating Proof

Certificates for a Language-Agnostic Deductive Program Verifier’. In: Proc. ACM Program. Lang.
7.OOPSLA1 (2023), pp. 56–84. doi: 10.1145/3586029 (cited on pages 6, 90, 185).

[49] Steven Keuchel, Sander Huyghebaert, Georgy Lukyanov, and Dominique Devriese. ‘Verified symbolic

execution with Kripke specification monads (and no meta-programming)’. In: Proc. ACM Program.
Lang. 6.ICFP (2022), pp. 194–224. doi: 10.1145/3547628 (cited on page 7).

[50] Andrew W. Appel. ‘VeriSmall: Verified Smallfoot Shape Analysis’. In: Certified Programs and Proofs
(CPP). Ed. by Jean-Pierre Jouannaud and Zhong Shao. Vol. 7086. Lecture Notes in Computer Science.

Springer, 2011, pp. 231–246. doi: 10.1007/978-3-642-25379-9_18 (cited on page 7).

[51] Adam Chlipala. ‘Mostly-automated verification of low-level programs in computational separation

logic’. In: Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011. Ed. by Mary W. Hall and David A. Padua.

ACM, 2011, pp. 234–245. doi: 10.1145/1993498.1993526 (cited on page 7).

[52] Ike Mulder, Robbert Krebbers, and Herman Geuvers. ‘Diaframe: automated verification of fine-grained

concurrent programs in Iris’. In: PLDI ’22: 43rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, San Diego, CA, USA, June 13 - 17, 2022. Ed. by Ranjit Jhala and

Isil Dillig. ACM, 2022, pp. 809–824. doi: 10.1145/3519939.3523432 (cited on page 7).

[53] Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memarian, Derek Dreyer, and

Deepak Garg. ‘RefinedC: automating the foundational verification of C code with refined ownership

types’. In: Programming Language Design and Implementation (PLDI). Ed. by Stephen N. Freund and

Eran Yahav. ACM, 2021, pp. 158–174. doi: 10.1145/3453483.3454036 (cited on page 7).

[54] Lennard Gäher, Michael Sammler, Ralf Jung, Robbert Krebbers, and Derek Dreyer. ‘RefinedRust: A

Type System for High-Assurance Verification of Rust Programs’. In: Proc. ACM Program. Lang. 8.PLDI

(2024), pp. 1115–1139. doi: 10.1145/3656422 (cited on page 7).

[55] Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and Andrew W. Appel. ‘VST-Floyd:

A Separation Logic Tool to Verify Correctness of C Programs’. In: J. Autom. Reason. 61.1-4 (2018),

pp. 367–422. doi: 10.1007/S10817-018-9457-5 (cited on page 7).

[56] Pierre-Yves Strub, Nikhil Swamy, Cédric Fournet, and Juan Chen. ‘Self-certification: bootstrapping

certified typecheckers in F* with Coq’. In: Principles of Programming Languages (POPL). Ed. by John Field

and Michael Hicks. ACM, 2012. doi: 10.1145/2103656.2103723 (cited on pages 7, 89).

[57] Aymeric Fromherz, Aseem Rastogi, Nikhil Swamy, Sydney Gibson, Guido Martínez, Denis Merigoux,

and Tahina Ramananandro. ‘Steel: proof-oriented programming in a dependently typed concurrent

separation logic’. In: Proc. ACM Program. Lang. 5.ICFP (2021), pp. 1–30. doi: 10.1145/3473590 (cited

on page 7).

[58] Nikhil Swamy, Aseem Rastogi, Aymeric Fromherz, Denis Merigoux, Danel Ahman, and Guido

Martínez. ‘SteelCore: an extensible concurrent separation logic for effectful dependently typed

programs’. In: Proc. ACM Program. Lang. 4.ICFP (2020), 121:1–121:30. doi: 10.1145/3409003 (cited on

page 7).

[59] Gaurav Parthasarathy, Peter Müller, and Alexander J. Summers. ‘Formally Validating a Practical

Verification Condition Generator’. In: Computer Aided Verification (CAV). Ed. by Alexandra Silva and

K. Rustan M. Leino. Vol. 12760. LNCS. 2021, pp. 704–727. doi: 10.1007/978-3-030-81688-9_33

(cited on pages 11, 87).

https://doi.org/10.1145/3704856
https://doi.org/10.48550/ARXIV.2308.15567
http://us.metamath.org/downloads/metamath.pdf
https://doi.org/10.1145/3586029
https://doi.org/10.1145/3547628
https://doi.org/10.1007/978-3-642-25379-9_18
https://doi.org/10.1145/1993498.1993526
https://doi.org/10.1145/3519939.3523432
https://doi.org/10.1145/3453483.3454036
https://doi.org/10.1145/3656422
https://doi.org/10.1007/S10817-018-9457-5
https://doi.org/10.1145/2103656.2103723
https://doi.org/10.1145/3473590
https://doi.org/10.1145/3409003
https://doi.org/10.1007/978-3-030-81688-9_33

[60] Gaurav Parthasarathy, Thibault Dardinier, Benjamin Bonneau, Peter Müller, and Alexander J. Summers.

‘Towards Trustworthy Automated Program Verifiers: Formally Validating Translations into an Inter-

mediate Verification Language’. In: Proc. ACM Program. Lang. 8.PLDI (2024). doi: 10.1145/3656438

(cited on pages 11, 102, 117).

[61] Aleksandar Hubanov. ‘Formally Validating the AST-to-CFG Phase of the Boogie Program Verifier’.

Bachelor’s Thesis. ETH Zurich, 2022 (cited on pages 11, 84).

[62] Lukas Himmelreich. ‘Formally Validating the CFG Optimization Phase of the Boogie Program Verifier’.

Bachelor’s Thesis. ETH Zurich, 2023 (cited on pages 11, 74).

[63] Benjamin Bonneau. A formal foundation for the Dafny verifier. Internship Report. 2021 (cited on pages 11,

199, 201, 203).

[64] Thibault Dardinier, Gaurav Parthasarathy, and Peter Müller. ‘Verification-Preserving Inlining in

Automatic Separation Logic Verifiers’. In: Proc. ACM Program. Lang. 7.OOPSLA1 (2023), pp. 789–818.

doi: 10.1145/3586054 (cited on pages 12, 188).

[65] Thibault Dardinier, Gaurav Parthasarathy, Noé Weeks, Peter Müller, and Alexander J. Summers.

‘Sound Automation of Magic Wands’. In: Computer Aided Verification (CAV). Ed. by Sharon Shoham

and Yakir Vizel. Vol. 13372. Lecture Notes in Computer Science. Springer, 2022, pp. 130–151. doi:

10.1007/978-3-031-13188-2_7 (cited on pages 12, 188).

[66] Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin Timany, Derek Dreyer,

and Bart Jacobs. ‘The future is ours: prophecy variables in separation logic’. In: Proc. ACM Program.
Lang. 4.POPL (2020), 45:1–45:32. doi: 10.1145/3371113 (cited on page 12).

[67] K. Rustan M. Leino and Philipp Rümmer. ‘A Polymorphic Intermediate Verification Language: Design

and Logical Encoding’. In: Tools and Algorithms for the Construction and Analysis of Systems (TACAS).
Ed. by Javier Esparza and Rupak Majumdar. 2010. doi: 10.1007/978-3-642-12002-2_26 (cited on

pages 14, 19, 24, 35, 36, 62, 63, 101, 133).

[68] Xavier Leroy. ‘Formal certification of a compiler back-end or: programming a compiler with a proof

assistant’. In: POPL. 2006 (cited on pages 14, 91).

[69] Gilles Barthe, Delphine Demange, and David Pichardie. ‘Formal Verification of an SSA-Based Middle-

End for CompCert’. In: TOPLAS 36.1 (2014) (cited on pages 14, 91).

[70] Akash Lal, Shaz Qadeer, and Shuvendu K. Lahiri. ‘A Solver for Reachability Modulo Theories’. In:

Computer Aided Verification (CAV). Ed. by P. Madhusudan and Sanjit A. Seshia. 2012. doi: 10.1007/978-

3-642-31424-7_32 (cited on page 14).

[71] Shuvendu K. Lahiri, Chris Hawblitzel, Ming Kawaguchi, and Henrique Rebêlo. ‘SYMDIFF: A

Language-Agnostic Semantic Diff Tool for Imperative Programs’. In: Computer Aided Verification (CAV).
Ed. by P. Madhusudan and Sanjit A. Seshia. Vol. 7358. Lecture Notes in Computer Science. Springer,

2012, pp. 712–717. doi: 10.1007/978-3-642-31424-7_54 (cited on pages 14, 97).

[72] Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach, Michał Moskal, Thomas Santen,

Wolfram Schulte, and Stephan Tobies. ‘VCC: A Practical System for Verifying Concurrent C’. In:

Theorem Proving in Higher Order Logics (TPHOLs). Ed. by Stefan Berghofer, Tobias Nipkow, Christian

Urban, and Makarius Wenzel. 2009. doi: 10.1007/978-3-642-03359-9_2 (cited on page 14).

[73] Gaurav Parthasarathy. Boogie Semantics and Certificate Metatheory Formalisation. Accessed Decem-

ber 9, 2024. 2024. url: https : / / github . com / viperproject / foundational - boogie / tree /

90411340ac568c7870e85dd9ec627b84f01e79a3 (cited on pages 15, 24).

[74] Nancy A. Lynch and Frits W. Vaandrager. ‘Forward and Backward Simulations: I. Untimed Systems’.

In: Inf. Comput. 121.2 (1995), pp. 214–233. doi: 10.1006/inco.1995.1134 (cited on pages 21, 99, 138).

[75] Boogie Developers. Boogie implementation. Accessed May 13, 2024. url: https://github.com/boogie-

org/boogie (cited on page 24).

[76] Matthew S. Hecht and Jeffrey D. Ullman. ‘Flow Graph Reducibility’. In: SIAM J. Comput. 1.2 (1972),

pp. 188–202 (cited on page 37).

https://doi.org/10.1145/3656438
https://doi.org/10.1145/3586054
https://doi.org/10.1007/978-3-031-13188-2_7
https://doi.org/10.1145/3371113
https://doi.org/10.1007/978-3-642-12002-2_26
https://doi.org/10.1007/978-3-642-31424-7_32
https://doi.org/10.1007/978-3-642-31424-7_32
https://doi.org/10.1007/978-3-642-31424-7_54
https://doi.org/10.1007/978-3-642-03359-9_2
https://github.com/viperproject/foundational-boogie/tree/90411340ac568c7870e85dd9ec627b84f01e79a3
https://github.com/viperproject/foundational-boogie/tree/90411340ac568c7870e85dd9ec627b84f01e79a3
https://doi.org/10.1006/inco.1995.1134
https://github.com/boogie-org/boogie
https://github.com/boogie-org/boogie

[77] Matthew S. Hecht and Jeffrey D. Ullman. ‘Characterizations of Reducible Flow Graphs’. In: J. ACM
21.3 (1974), pp. 367–375. doi: 10.1145/321832.321835 (cited on page 37).

[78] K. Rustan M. Leino, Todd D. Millstein, and James B. Saxe. ‘Generating error traces from verification-

condition counterexamples’. In: Science of Computer Programming 55.1-3 (2005), pp. 209–226 (cited on

page 63).

[79] Aaron Tomb. Add missing antecedents to function axioms (Pull Request 749). Accessed April 9, 2024. June

2023. url: https://github.com/boogie-org/boogie/pull/749 (cited on page 65).

[80] Andrew W. Appel and Sandrine Blazy. ‘Separation Logic for Small-Step cminor’. In: Theorem Proving
in Higher Order Logics, 20th International Conference, TPHOLs 2007, Kaiserslautern, Germany, September
10-13, 2007, Proceedings. Ed. by Klaus Schneider and Jens Brandt. Vol. 4732. Lecture Notes in Computer

Science. Springer, 2007, pp. 5–21. doi: 10.1007/978-3-540-74591-4_3 (cited on page 81).

[81] Xavier Leroy. ‘A Formally Verified Compiler Back-end’. In: J. Autom. Reason. 43.4 (2009), pp. 363–446.

doi: 10.1007/S10817-009-9155-4 (cited on page 81).

[82] Vladimir Klebanov, Peter Müller, Natarajan Shankar, Gary T. Leavens, Valentin Wüstholz, Eyad

Alkassar, Rob Arthan, Derek Bronish, Rod Chapman, Ernie Cohen, Mark Hillebrand, Bart Jacobs,

K. Rustan M. Leino, Rosemary Monahan, Frank Piessens, Nadia Polikarpova, Tom Ridge, Jan Smans,

Stephan Tobies, Thomas Tuerk, Mattias Ulbrich, and Benjamin Weiß. ‘The 1st Verified Software

Competition: Experience Report’. In: FM. 2011 (cited on page 86).

[83] YuTing Chen and Carlo A. Furia. ‘Triggerless Happy – Intermediate Verification with a First-Order

Prover’. In: iFM. 2017 (cited on page 86).

[84] Boogie Developers. Boogie Verifier Test Suite Used For Evaluation. https://github.com/boogie-

org/boogie/tree/b4be7f72e3c74cfa9257f385e2c59613b8ced898/Test (cited on page 85).

[85] Jacques-Henri Jourdan, François Pottier, and Xavier Leroy. ‘Validating LR(1) Parsers’. In: European
Symposium on Programming (ESOP). Ed. by Helmut Seidl. 2012. doi: 10.1007/978-3-642-28869-2_20

(cited on page 88).

[86] Oskar Abrahamsson, Magnus O. Myreen, Ramana Kumar, and Thomas Sewell. ‘Candle: A Verified

Implementation of HOL Light’. In: Interactive Theorem Proving (ITP). Ed. by June Andronick and

Leonardo de Moura. 2022 (cited on page 88).

[87] Alejandro Aguirre. Towards a Provably Correct Encoding from F* to SMT. Tech. rep. INRIA, 2016 (cited

on page 89).

[88] Clark Barrett, Leonardo de Moura, and Pascal Fontaine. ‘Proofs in Satisfiability Modulo Theories’.

In: All about Proofs, Proofs for All. Vol. 55. Mathematical Logic and Foundations. College Publications,

2015, pp. 23–44 (cited on page 90).

[89] Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank Piessens.

‘VeriFast: A Powerful, Sound, Predictable, Fast Verifier for C and Java’. In: NASA Formal Methods (NFM).
2011, pp. 41–55. doi: 10.1007/978-3-642-20398-5_4 (cited on pages 90, 188).

[90] Paolo Herms, Claude Marché, and Benjamin Monate. ‘A Certified Multi-prover Verification Condition

Generator’. In: VSTTE. 2012 (cited on page 90).

[91] Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy, and David Pichardie. ‘A

formally-verified C static analyzer’. In: POPL. 2015 (cited on page 90).

[92] Ryan Doenges, Tobias Kappé, John Sarracino, Nate Foster, and Greg Morrisett. ‘Leapfrog: certified

equivalence for protocol parsers’. In: Programming Language Design and Implementation (PLDI). Ed. by

Ranjit Jhala and Isil Dillig. ACM, 2022, pp. 950–965. doi: 10.1145/3519939.3523715 (cited on

page 90).

[93] Eyad Alkassar, Sascha Böhme, Kurt Mehlhorn, and Christine Rizkallah. ‘A Framework for the

Verification of Certifying Computations’. In: JAR 52.3 (2014), pp. 241–273 (cited on page 90).

[94] Jean-Baptiste Tristan and Xavier Leroy. ‘Formal Verification of Translation Validators: A Case Study

on Instruction Scheduling Optimizations’. In: POPL. 2008 (cited on page 91).

https://doi.org/10.1145/321832.321835
https://github.com/boogie-org/boogie/pull/749
https://doi.org/10.1007/978-3-540-74591-4_3
https://doi.org/10.1007/S10817-009-9155-4
https://github.com/boogie-org/boogie/tree/b4be7f72e3c74cfa9257f385e2c59613b8ced898/Test
https://github.com/boogie-org/boogie/tree/b4be7f72e3c74cfa9257f385e2c59613b8ced898/Test
https://doi.org/10.1007/978-3-642-28869-2_20
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1145/3519939.3523715

[95] Jean-Baptiste Tristan and Xavier Leroy. ‘A simple, verified validator for software pipelining’. In: POPL.

2010 (cited on page 91).

[96] Sandrine Blazy, Delphine Demange, and David Pichardie. ‘Validating Dominator Trees for a Fast,

Verified Dominance Test’. In: ITP. 2015 (cited on page 91).

[97] Radu Grigore. ‘The Design and Algorithms of a Verification Condition Generator’. PhD thesis.

University College Dublin, 2012 (cited on page 91).

[98] seL4 Developers. Efficient lookup table creation in Isabelle. Accessed May 11, 2024. url: https://

github.com/seL4/l4v/blob/eb3db4bf34b3e7584093f6e8e95503659a12351d/tools/c-parser/

StaticFun.thy (cited on pages 93, 180).

[99] Shaz Qadeer. Monomorphization of polymorphic maps and binders. Accessed March 19, 2024. Dec. 2022.

url: https://github.com/boogie-org/boogie/pull/669 (cited on pages 94, 95, 136, 188, 203).

[100] Ioannis T. Kassios. ‘Dynamic Frames: Support for Framing, Dependencies and Sharing Without

Restrictions’. In: Formal Methods (FM). Ed. by Jayadev Misra, Tobias Nipkow, and Emil Sekerinski.

2006. doi: 10.1007/11813040_19 (cited on page 98).

[101] Matthew J. Parkinson and Alexander J. Summers. ‘The Relationship Between Separation Logic

and Implicit Dynamic Frames’. In: Logical Methods in Computer Science 8.3:01 (2012), pp. 1–54. doi:

10.2168/LMCS-8(3:1)2012 (cited on pages 98, 103, 129, 192).

[102] Viper Developers. Viper-to-Boogie implementation (https://github.com/viperproject/carbon). Accessed April

4, 2024. 2024. url: https://github.com/viperproject/carbon (cited on page 99).

[103] Gaurav Parthasarathy. Viper Semantics and Certificate Metatheory Formalisation. Accessed December 9,

2024. 2024. url:https://github.com/viperproject/viper-roots/tree/845f8eed90c6dd51fad779

(cited on pages 102, 109).

[104] Gaurav Parthasarathy, Thibault Dardinier, Benjamin Bonneau, Peter Müller, and Alexander J. Summers.

Towards Trustworthy Automated Program Verifiers: Formally Validating Translations into an Intermediate
Verification Language – Artifact. 2024. doi: 10.5281/zenodo.10802176 (cited on page 102).

[105] John Boyland. ‘Checking Interference with Fractional Permissions’. In: Static Analysis (SAS). Ed. by

Radhia Cousot. 2003, pp. 55–72. doi: 10.1007/3-540-44898-5_4 (cited on page 103).

[106] David Detlefs, Greg Nelson, and James B. Saxe. ‘Simplify: a theorem prover for program checking’. In:

J. ACM 52.3 (2005), pp. 365–473. doi: 10.1145/1066100.1066102 (cited on page 134).

[107] Alexander J. Summers and Sophia Drossopoulou. ‘A Formal Semantics for Isorecursive and Equire-

cursive State Abstractions’. In: European Conference on Object-Oriented Programming (ECOOP). Ed. by

Giuseppe Castagna. Vol. 7920. Lecture Notes in Computer Science. Springer, 2013, pp. 129–153. doi:

10.1007/978-3-642-39038-8_6 (cited on pages 170, 192, 195, 197).

[108] Marco Eilers, Peter Müller, and Samuel Hitz. ‘Modular Product Programs’. In: European Symposium
on Programming (ESOP). Ed. by Amal Ahmed. 2018. doi: 10.1007/978-3-319-89884-1_18 (cited on

page 178).

[109] K. Rustan M. Leino and Peter Müller. ‘A Basis for Verifying Multi-threaded Programs’. In: European
Symposium on Programming (ESOP). Ed. by Giuseppe Castagna. Vol. 5502. Lecture Notes in Computer

Science. Springer, 2009, pp. 378–393. doi: 10.1007/978-3-642-00590-9_27 (cited on pages 182, 187).

[110] K. Rustan M. Leino, Peter Müller, and Jan Smans. ‘Verification of Concurrent Programs with Chalice’.

In: Foundations of Security Analysis and Design V, FOSAD 2007/2008/2009 Tutorial Lectures. Ed. by

Alessandro Aldini, Gilles Barthe, and Roberto Gorrieri. Vol. 5705. Lecture Notes in Computer Science.

Springer, 2009, pp. 195–222. doi: 10.1007/978-3-642-03829-7_7 (cited on pages 182, 187).

[111] Alexander J. Summers and Peter Müller. ‘Automating deductive verification for weak-memory

programs (extended version)’. In: International Journal on Software Tools for Technology Transfer (STTT)
22.6 (2020), pp. 709–728. doi: 10.1007/S10009-020-00559-Y (cited on page 182).

[112] Felix A. Wolf, Malte Schwerhoff, and Peter Müller. ‘Concise outlines for a complex logic: a proof outline

checker for TaDA’. In: Formal Methods in System Design 61.1 (2022), pp. 110–136. doi: 10.1007/S10703-

023-00427-W (cited on page 182).

https://github.com/seL4/l4v/blob/eb3db4bf34b3e7584093f6e8e95503659a12351d/tools/c-parser/StaticFun.thy
https://github.com/seL4/l4v/blob/eb3db4bf34b3e7584093f6e8e95503659a12351d/tools/c-parser/StaticFun.thy
https://github.com/seL4/l4v/blob/eb3db4bf34b3e7584093f6e8e95503659a12351d/tools/c-parser/StaticFun.thy
https://github.com/boogie-org/boogie/pull/669
https://doi.org/10.1007/11813040_19
https://doi.org/10.2168/LMCS-8(3:1)2012
https://github.com/viperproject/carbon
https://github.com/viperproject/viper-roots/tree/845f8eed90c6dd51fad779
https://doi.org/10.5281/zenodo.10802176
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1145/1066100.1066102
https://doi.org/10.1007/978-3-642-39038-8_6
https://doi.org/10.1007/978-3-319-89884-1_18
https://doi.org/10.1007/978-3-642-00590-9_27
https://doi.org/10.1007/978-3-642-03829-7_7
https://doi.org/10.1007/S10009-020-00559-Y
https://doi.org/10.1007/S10703-023-00427-W
https://doi.org/10.1007/S10703-023-00427-W

[113] Claude Marché and Yannick Moy. The Jessie plugin for Deductive Verification in Frama-C. 2018. url:

http://krakatoa.lri.fr/jessie.pdf (cited on page 182).

[114] Christine Rizkallah, Japheth Lim, Yutaka Nagashima, Thomas Sewell, Zilin Chen, Liam O’Connor, Toby

C. Murray, Gabriele Keller, and Gerwin Klein. ‘A Framework for the Automatic Formal Verification of

Refinement from Cogent to C.’ In: Interactive Theorem Proving (ITP). Ed. by Jasmin Christian Blanchette

and Stephan Merz. 2016. doi: 10.1007/978-3-319-43144-4_20 (cited on page 184).

[115] Simon Winwood, Gerwin Klein, Thomas Sewell, June Andronick, David A. Cock, and Michael Norrish.

‘Mind the Gap’. In: Theorem Proving in Higher Order Logics (TPHOLS). Ed. by Stefan Berghofer, Tobias

Nipkow, Christian Urban, and Makarius Wenzel. 2009. doi: 10.1007/978-3-642-03359-9_34 (cited

on page 184).

[116] David A. Cock, Gerwin Klein, and Thomas Sewell. ‘Secure Microkernels, State Monads and Scalable

Refinement’. In: Theorem Proving in Higher Order Logics (TPHOLS). Ed. by Otmane Ait Mohamed,

César A. Muñoz, and Sofiène Tahar. 2008. doi: 10.1007/978-3-540-71067-7_16 (cited on page 184).

[117] Gerwin Klein, Thomas Sewell, and Simon Winwood. ‘Refinement in the Formal Verification of the

seL4 Microkernel’. In: Design and Verification of Microprocessor Systems for High-Assurance Applications.
Ed. by David S. Hardin. Springer, 2010, pp. 323–339. doi: 10.1007/978-1-4419-1539-9_11 (cited on

page 184).

[118] Amir Pnueli, Michael Siegel, and Eli Singerman. ‘Translation Validation’. In: Tools and Algorithms
for Construction and Analysis of Systems(TACAS). Ed. by Bernhard Steffen. Vol. 1384. Lecture Notes in

Computer Science. Springer, 1998, pp. 151–166. doi: 10.1007/BFB0054170 (cited on page 184).

[119] Martin C. Rinard and Darko Marino. ‘Credible Compilation with Pointers’. In: Workshop on Run-Time
Result Verification. 1999 (cited on page 184).

[120] Thomas Arthur Leck Sewell, Magnus O. Myreen, and Gerwin Klein. ‘Translation validation for a

verified OS kernel’. In: Programming Language Design and Implementation (PLDI). Ed. by Hans-Juergen

Boehm and Cormac Flanagan. ACM, 2013, pp. 471–482. doi: 10.1145/2491956.2462183 (cited on

page 185).

[121] Malte Schwerhoff. ‘Advancing Automated, Permission-Based Program Verification Using Symbolic

Execution’. PhD thesis. ETH Zurich, Zürich, Switzerland, 2016. doi: 10.3929/ETHZ-A-010835519

(cited on pages 187, 188).

[122] Jenna DiVincenzo, Ian McCormack, Hemant Gouni, Jacob Gorenburg, Mona Zhang, Conrad Zim-

merman, Joshua Sunshine, Éric Tanter, and Jonathan Aldrich. ‘Gradual C0: Symbolic Execution for

Efficient Gradual Verification’. In: CoRR abs/2210.02428 (2022). doi: 10.48550/ARXIV.2210.02428

(cited on page 188).

[123] Thibault Dardinier, Peter Müller, and Alexander J. Summers. ‘Fractional resources in unbounded

separation logic’. In: Proc. ACM Program. Lang. 6.OOPSLA2 (2022), pp. 1066–1092. doi: 10.1145/

3563326 (cited on pages 188, 192).

[124] Gaurav Parthasarathy. Include definedness checks during exhale (Pull Request 457). Accessed July 18, 2024.

Mar. 2023. url: https://github.com/viperproject/carbon/pull/457 (cited on pages 188, 190).

[125] Gaurav Parthasarathy. Viper allows predicates whose fractional amount is not self-framing (Issue 809).
Accessed September 13, 2024. Aug. 2024. url: https://github.com/viperproject/silver/issues/

809 (cited on page 189).

[126] Gaurav Parthasarathy. The semantics of permission introspection in the body of unfolding expressions is
unclear (Issue 682). Accessed July 19, 2024. Aug. 2023. url: https://github.com/viperproject/

silver/issues/682 (cited on page 189).

[127] Gaurav Parthasarathy. Move well-definedness checks during inhale into InhaleModule and use new terminology
(Pull Request 407). Accessed July 18, 2024. Mar. 2022. url: https://github.com/viperproject/

carbon/pull/407 (cited on page 190).

[128] Gaurav Parthasarathy. Refactor well-definedness of field acesses and permission division (Pull Request 451).
Accessed July 18, 2024. Feb. 2023. url: https://github.com/viperproject/carbon/pull/451 (cited

on page 191).

http://krakatoa.lri.fr/jessie.pdf
https://doi.org/10.1007/978-3-319-43144-4_20
https://doi.org/10.1007/978-3-642-03359-9_34
https://doi.org/10.1007/978-3-540-71067-7_16
https://doi.org/10.1007/978-1-4419-1539-9_11
https://doi.org/10.1007/BFB0054170
https://doi.org/10.1145/2491956.2462183
https://doi.org/10.3929/ETHZ-A-010835519
https://doi.org/10.48550/ARXIV.2210.02428
https://doi.org/10.1145/3563326
https://doi.org/10.1145/3563326
https://github.com/viperproject/carbon/pull/457
https://github.com/viperproject/silver/issues/809
https://github.com/viperproject/silver/issues/809
https://github.com/viperproject/silver/issues/682
https://github.com/viperproject/silver/issues/682
https://github.com/viperproject/carbon/pull/407
https://github.com/viperproject/carbon/pull/407
https://github.com/viperproject/carbon/pull/451

[129] Gaurav Parthasarathy. Well definedness checking order fixes (Pull Request 429). Accessed July 18, 2024.

Aug. 2022. url: https://github.com/viperproject/carbon/pull/429 (cited on page 191).

[130] Matthew J. Parkinson and Gavin M. Bierman. ‘Separation logic and abstraction’. In: Principles of
Programming Languages (POPL). Ed. by Jens Palsberg and Martín Abadi. ACM, 2005, pp. 247–258. doi:

10.1145/1040305.1040326 (cited on page 191).

[131] Gaurav Parthasarathy. Soundness of Dafny relies on Boogie maps not being extensional (Issue 2463). Accessed

August 15, 2024. July 2022. url: https://github.com/dafny-lang/dafny/issues/2463 (cited on

page 203).

https://github.com/viperproject/carbon/pull/429
https://doi.org/10.1145/1040305.1040326
https://github.com/dafny-lang/dafny/issues/2463

	Contents
	Introduction
	Translational Program Verifiers: An Overview
	State of the Art
	Challenges
	This Dissertation
	Publications and Collaborations

	Formally Validating a Verification Condition Generator
	Introduction
	High-Level Validation Approach
	A Formal Semantics for Boogie
	Cycle Elimination
	Assignment Elimination
	VC Generation
	CFG Optimisations
	A Formal Semantics For Boogie Abstract Syntax Trees
	AST-to-CFG Transformation
	Implementation and Evaluation
	Related Work
	Future Work

	Formally Validating Translations into an Intermediate Verification Language
	Introduction
	A Formal Semantics for Viper
	The Existing Viper-to-Boogie Translation
	A Forward Simulation Methodology for Front-End Translations
	Putting The Methodology to Work
	Implementation and Evaluation
	Related Work
	Impact of Work on Viper
	Future Work

	Conclusion
	Appendix
	Detailed Results of the Evaluation in Chapter 3

	Bibliography

