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is correct
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says “Yes”is valid

VC generator soundness SMT solver soundness

Desired property: Soundness

Key problem: 
1. No formal guarantees on implementations used in practice
2. Nontrivial implementation consisting of many thousands of lines of code

logical formula
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Option 1: Prove Existing Implementation Correct

Problem: impractical since implementation languages of existing tools lack formalization

Option 2: Reimplement VC Generator in ITP (e.g., Coq, Isabelle)

Problems:
• Lose benefits of modern programming languages
• Likely hard to convince developers to move to an ITP
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Advantages

1. Can reuse existing implementation

2. Doing a proof for a concrete instance is often easier than doing so for all instances
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Boogie Program Structure

Background Theory

Program
polymorphic functions, axioms, type constructors

proc p1(…) { 
  local var decls;
  stmt;
}

Procedures

Global variables 
and constants

assert E assume Ex := E havoc x

Main primitive statements:

Control flow:

Expressions:

function calls, value and type quantification, …

…

7

stmt; stmt   if(*) { stmt } else { stmt } 

while(E) invariant E { stmt }    break   goto



Semantics of a Boogie Program
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procedure p() {
  var i:int;
  var j:int;
 
  assume i != 0;
  j := 0;

  while (i != 0) 
    invariant j >= 0 && (i == 0 ==> j > 0);
  {
    j := j+1;        
    i := i-1; 
  }
 
  assert j > 0;
}
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procedure p() {
  var i:int;
  var j:int;
 
  assume i != 0;
  j := 0;

  while (i != 0) 
    invariant j >= 0 && (i == 0 ==> j > 0);
  {
    j := j+1;        
    i := i-1; 
  }
 
  assert j > 0;
}

Check that invariant holds
• on entry of the loop and
• at beginning and end of a loop iteration



Semantics of a Boogie Program
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procedure p() {
  var i:int;
  var j:int;
 
  assume i != 0;
  j := 0;

  while (i != 0) 
    invariant j >= 0 && (i == 0 ==> j > 0);
  {
    j := j+1;        
    i := i-1; 
  }
 
  assert j > 0;
}

Check that condition holds



Boogie Verifier Implementation

Existing Boogie verifier implementation VCP
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General Proof Generation Approach
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B2 assert INV
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Crucial property for proof: 
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assume j>0
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havoc i
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i := i+1
assert INV
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B3

B4

assume j>0
assert INV

assert j>0

Our generated proof does not require an explicit notion of domination
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Assignment elimination

Proof relies on global property 
→ how to express local results?
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Weakest precondition generation

Encoding of type system

Assignment elimination

Proof relies on global property 
→ how to express local results?



Concrete Numbers for Generated Proofs
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Boogie Program Generated Isabelle Proof

File LOC LOC Time to check [s]

MaxOfArray 22 2463 22.6

Plateau 50 2504 26.0

DutchFlag 76 4763 65.0

… … … …

Overhead incurred by the generation of proofs is negligible



Conclusion

More details in CAV21 paper 
“Formally Validating a Practical Verification Condition Generator”

https://github.com/gauravpartha/foundational_boogie/

https://github.com/gauravpartha/boogie_proofgen/
Instrumented Boogie verifier

Boogie formalization

Future work: Extend subset 

• Boogie maps

• gotos and breaks in the AST-to-CFG phase

• dead variable elimination
15

https://github.com/gauravpartha/foundational_boogie/
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