
Making the Boogie
Verifier Foundational

Gaurav Parthasarathy

Joint work with Lukas Himmelreich, Aleksandar Hubanov, Peter Müller and Alex Summers

1

Verification Condition Generator

VC generatorP

input program
Yes

Maybe not

“verification success”

“potential errors”

VC
Is VC valid? SMT

solver

Boogie, Dafny, Viper, Why3,… logical formula

2

Verification Condition Generator

VC generatorP

input program
Yes

Maybe not

“verification success”

“potential errors”

VC
Is VC valid? SMT

solver

Boogie, Dafny, Viper, Why3,…

Desired property: Soundness
is correct

SMT solver
says “Yes”

logical formula

2

Verification Condition Generator

VC generatorP

input program
Yes

Maybe not

“verification success”

“potential errors”

VC
Is VC valid? SMT

solver

Boogie, Dafny, Viper, Why3,…

is correct
SMT solver
says “Yes”is valid

VC generator soundness SMT solver soundness

Desired property: Soundness

logical formula

3

Verification Condition Generator

VC generatorP

input program
Yes

Maybe not

“verification success”

“potential errors”

VC
Is VC valid? SMT

solver

Boogie, Dafny, Viper, Why3,…

is correct
SMT solver
says “Yes”is valid

VC generator soundness SMT solver soundness

Desired property: Soundness

logical formula

3

Verification Condition Generator

VC generatorP

input program
Yes

Maybe not

“verification success”

“potential errors”

VC
Is VC valid? SMT

solver

Boogie, Dafny, Viper, Why3,…

is correct
SMT solver
says “Yes”is valid

VC generator soundness SMT solver soundness

Desired property: Soundness

Key problem:
1. No formal guarantees on implementations used in practice
2. Nontrivial implementation consisting of many thousands of lines of code

logical formula

3

Possible Approach: Prove Once and For All

4

Possible Approach: Prove Once and For All

4

Option 1: Prove Existing Implementation Correct

Problem: impractical since implementation languages of existing tools lack formalization

Possible Approach: Prove Once and For All

4

Option 1: Prove Existing Implementation Correct

Problem: impractical since implementation languages of existing tools lack formalization

Option 2: Reimplement VC Generator in ITP (e.g., Coq, Isabelle)

Problems:
• Lose benefits of modern programming languages
• Likely hard to convince developers to move to an ITP

Our Approach: Foundational Per-Run Validation

P

input program

VC

is correct is valid
VC generator soundness

Instrumented VC
generator

5

proof in
an ITP

Our Approach: Foundational Per-Run Validation

P

input program

VC

is correct is valid
VC generator soundness

Instrumented VC
generator

5

proof in
an ITP

Advantages

1. Can reuse existing implementation

2. Doing a proof for a concrete instance is often easier than doing so for all instances

Our Approach: Foundational Per-Run Validation

P

Boogie program

VC

is correct is valid
Boogie verifier soundness

Instrumented
Boogie verifier

size of implementation:
multiple of 10K lines of C# code

6

proof (for a subset of Boogie
programs)

Our Approach: Foundational Per-Run Validation

P

Boogie program

VC

is correct is valid
Boogie verifier soundness

Instrumented
Boogie verifier

Based on operational semantics

size of implementation:
multiple of 10K lines of C# code

6

proof (for a subset of Boogie
programs)

Boogie Program Structure

Background Theory

Program
polymorphic functions, axioms, type constructors

proc p1(…) {
 local var decls;
 stmt;
}

Procedures

Global variables
and constants

…

7

Boogie Program Structure

Background Theory

Program
polymorphic functions, axioms, type constructors

proc p1(…) {
 local var decls;
 stmt;
}

Procedures

Global variables
and constants

assert E assume Ex := E havoc x

Main primitive statements:

Control flow:

Expressions:

function calls, value and type quantification, …

…

7

stmt; stmt if(*) { stmt } else { stmt }

while(E) invariant E { stmt } break goto

Semantics of a Boogie Program

8

procedure p() {
 var i:int;
 var j:int;

 assume i != 0;
 j := 0;

 while (i != 0)
 invariant j >= 0 && (i == 0 ==> j > 0);
 {
 j := j+1;
 i := i-1;
 }

 assert j > 0;
}

Semantics of a Boogie Program

8

procedure p() {
 var i:int;
 var j:int;

 assume i != 0;
 j := 0;

 while (i != 0)
 invariant j >= 0 && (i == 0 ==> j > 0);
 {
 j := j+1;
 i := i-1;
 }

 assert j > 0;
}

Consider all possible values for i and j

Semantics of a Boogie Program

8

procedure p() {
 var i:int;
 var j:int;

 assume i != 0;
 j := 0;

 while (i != 0)
 invariant j >= 0 && (i == 0 ==> j > 0);
 {
 j := j+1;
 i := i-1;
 }

 assert j > 0;
}

Prune executions

Semantics of a Boogie Program

8

procedure p() {
 var i:int;
 var j:int;

 assume i != 0;
 j := 0;

 while (i != 0)
 invariant j >= 0 && (i == 0 ==> j > 0);
 {
 j := j+1;
 i := i-1;
 }

 assert j > 0;
}

Check that invariant holds
• on entry of the loop and
• at beginning and end of a loop iteration

Semantics of a Boogie Program

8

procedure p() {
 var i:int;
 var j:int;

 assume i != 0;
 j := 0;

 while (i != 0)
 invariant j >= 0 && (i == 0 ==> j > 0);
 {
 j := j+1;
 i := i-1;
 }

 assert j > 0;
}

Check that condition holds

Boogie Verifier Implementation

Existing Boogie verifier implementation VCP

9

Boogie Verifier Implementation

VCP P2 P3
AST-to-CFG

AST CFG CFG CFG

basic
optimizations

cycle
elimination

assignment
elimination

P4 P5

CFG formula

Boogie verifier

weakest pre

10

Boogie Verifier Implementation

VCP P2 P3
AST-to-CFG

AST CFG CFG CFG

basic
optimizations

cycle
elimination

assignment
elimination

P4 P5

CFG formula

Boogie verifier

weakest pre

is validis correct is correct is correct is correct is correct

10

Boogie Verifier Implementation

VCP P2 P3
AST-to-CFG

AST CFG CFG CFG

basic
optimizations

cycle
elimination

assignment
elimination

P4 P5

CFG formula

Boogie verifier

weakest pre

is validis correct is correct is correct is correct is correct

10

General Proof Generation Approach

B5

B4B3

B2

B1 C1

C2

C3 C4

C5

11

General Proof Generation Approach

Prove local results relating single-block executions

B5

B4B3

B2

B1 C1

C2

C3 C4

C5

11

General Proof Generation Approach

B5

B4B3

B2

B1
Prove global results relating arbitrary executions starting from blocks

C1

C2

C3 C4

C5

11

Challenges for Proof Generation

12

Challenges for Proof Generation
CFG Cycle elimination

12

B2 assert INV

i := i+1

B1

B3

B4

assume j>0

assert j>0

B2
havoc i
assume INV

i := i+1
assert INV

B1

B3

B4

assume j>0
assert INV

assert j>0

Challenges for Proof Generation
CFG Cycle elimination

12

B2 assert INV

i := i+1

Crucial property for proof:
Every execution that reaches B4 goes through B2
→ “B2 dominates B4”

B1

B3

B4

assume j>0

assert j>0

B2
havoc i
assume INV

i := i+1
assert INV

B1

B3

B4

assume j>0
assert INV

assert j>0

Challenges for Proof Generation
CFG Cycle elimination

12

B2 assert INV

i := i+1

Crucial property for proof:
Every execution that reaches B4 goes through B2
→ “B2 dominates B4”

B1

B3

B4

assume j>0

assert j>0

B0

B2
havoc i
assume INV

i := i+1
assert INV

B1

B3

B4

assume j>0
assert INV

assert j>0

B0

Challenges for Proof Generation
CFG Cycle elimination

12

B2 assert INV

i := i+1

Crucial property for proof:
Every execution that reaches B4 goes through B2
→ “B2 dominates B4”

B1

B3

B4

assume j>0

assert j>0

B2
havoc i
assume INV

i := i+1
assert INV

B1

B3

B4

assume j>0
assert INV

assert j>0

Our generated proof does not require an explicit notion of domination

Challenges for Proof Generation

13

Assignment elimination

Proof relies on global property
→ how to express local results?

Challenges for Proof Generation

13

Weakest precondition generation

Encoding of type system

Assignment elimination

Proof relies on global property
→ how to express local results?

Concrete Numbers for Generated Proofs

14

Boogie Program Generated Isabelle Proof

File LOC LOC Time to check [s]

MaxOfArray 22 2463 22.6

Plateau 50 2504 26.0

DutchFlag 76 4763 65.0

… … … …

Overhead incurred by the generation of proofs is negligible

Conclusion

More details in CAV21 paper
“Formally Validating a Practical Verification Condition Generator”

https://github.com/gauravpartha/foundational_boogie/

https://github.com/gauravpartha/boogie_proofgen/
Instrumented Boogie verifier

Boogie formalization

Future work: Extend subset

• Boogie maps

• gotos and breaks in the AST-to-CFG phase

• dead variable elimination
15

https://github.com/gauravpartha/foundational_boogie/
https://github.com/gauravpartha/boogie_proofgen/

	Folie 1: Making the Boogie Verifier Foundational
	Folie 2: Verification Condition Generator
	Folie 3: Verification Condition Generator
	Folie 4: Verification Condition Generator
	Folie 5: Verification Condition Generator
	Folie 6: Verification Condition Generator
	Folie 7: Possible Approach: Prove Once and For All
	Folie 8: Possible Approach: Prove Once and For All
	Folie 9: Possible Approach: Prove Once and For All
	Folie 10: Our Approach: Foundational Per-Run Validation
	Folie 11: Our Approach: Foundational Per-Run Validation
	Folie 12: Our Approach: Foundational Per-Run Validation
	Folie 13: Our Approach: Foundational Per-Run Validation
	Folie 14: Boogie Program Structure
	Folie 15: Boogie Program Structure
	Folie 16: Semantics of a Boogie Program
	Folie 17: Semantics of a Boogie Program
	Folie 18: Semantics of a Boogie Program
	Folie 19: Semantics of a Boogie Program
	Folie 20: Semantics of a Boogie Program
	Folie 21: Boogie Verifier Implementation
	Folie 22: Boogie Verifier Implementation
	Folie 23: Boogie Verifier Implementation
	Folie 24: Boogie Verifier Implementation
	Folie 25: General Proof Generation Approach
	Folie 26: General Proof Generation Approach
	Folie 27: General Proof Generation Approach
	Folie 28: Challenges for Proof Generation
	Folie 29: Challenges for Proof Generation
	Folie 30: Challenges for Proof Generation
	Folie 31: Challenges for Proof Generation
	Folie 32: Challenges for Proof Generation
	Folie 33: Challenges for Proof Generation
	Folie 34: Challenges for Proof Generation
	Folie 35: Concrete Numbers for Generated Proofs
	Folie 36: Conclusion

